These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


188 related items for PubMed ID: 15225600

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Characterization of the NapGH quinol dehydrogenase complex involved in Wolinella succinogenes nitrate respiration.
    Kern M, Simon J.
    Mol Microbiol; 2008 Sep; 69(5):1137-52. PubMed ID: 18631238
    [Abstract] [Full Text] [Related]

  • 3. Production of recombinant multiheme cytochromes c in Wolinella succinogenes.
    Kern M, Simon J.
    Methods Enzymol; 2011 Sep; 486():429-46. PubMed ID: 21185447
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Clade II nitrous oxide respiration of Wolinella succinogenes depends on the NosG, -C1, -C2, -H electron transport module, NosB and a Rieske/cytochrome bc complex.
    Hein S, Witt S, Simon J.
    Environ Microbiol; 2017 Dec; 19(12):4913-4925. PubMed ID: 28925551
    [Abstract] [Full Text] [Related]

  • 6. Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein.
    Simon J, Sänger M, Schuster SC, Gross R.
    Mol Microbiol; 2003 Jul; 49(1):69-79. PubMed ID: 12823811
    [Abstract] [Full Text] [Related]

  • 7. Electron transport chains and bioenergetics of respiratory nitrogen metabolism in Wolinella succinogenes and other Epsilonproteobacteria.
    Kern M, Simon J.
    Biochim Biophys Acta; 2009 Jun; 1787(6):646-56. PubMed ID: 19171117
    [Abstract] [Full Text] [Related]

  • 8. Nitrate reduction by Desulfovibrio desulfuricans: a periplasmic nitrate reductase system that lacks NapB, but includes a unique tetraheme c-type cytochrome, NapM.
    Marietou A, Richardson D, Cole J, Mohan S.
    FEMS Microbiol Lett; 2005 Jul 15; 248(2):217-25. PubMed ID: 15972253
    [Abstract] [Full Text] [Related]

  • 9. A NapC/NirT-type cytochrome c (NrfH) is the mediator between the quinone pool and the cytochrome c nitrite reductase of Wolinella succinogenes.
    Simon J, Gross R, Einsle O, Kroneck PM, Kröger A, Klimmek O.
    Mol Microbiol; 2000 Feb 15; 35(3):686-96. PubMed ID: 10672190
    [Abstract] [Full Text] [Related]

  • 10. The Wolinella succinogenes mcc gene cluster encodes an unconventional respiratory sulphite reduction system.
    Kern M, Klotz MG, Simon J.
    Mol Microbiol; 2011 Dec 15; 82(6):1515-30. PubMed ID: 22040142
    [Abstract] [Full Text] [Related]

  • 11. Enzymology and bioenergetics of respiratory nitrite ammonification.
    Simon J.
    FEMS Microbiol Rev; 2002 Aug 15; 26(3):285-309. PubMed ID: 12165429
    [Abstract] [Full Text] [Related]

  • 12. Periplasmic nitrate reduction in Wolinella succinogenes: cytoplasmic NapF facilitates NapA maturation and requires the menaquinol dehydrogenase NapH for membrane attachment.
    Kern M, Simon J.
    Microbiology (Reading); 2009 Aug 15; 155(Pt 8):2784-2794. PubMed ID: 19477904
    [Abstract] [Full Text] [Related]

  • 13. A periplasmic flavoprotein in Wolinella succinogenes that resembles the fumarate reductase of Shewanella putrefaciens.
    Simon J, Gross R, Klimmek O, Ringel M, Kröger A.
    Arch Microbiol; 1998 May 15; 169(5):424-33. PubMed ID: 9560424
    [Abstract] [Full Text] [Related]

  • 14. PsrR, a member of the AraC family of transcriptional regulators, is required for the synthesis of Wolinella succinogenes polysulfide reductase.
    Braatsch S, Krafft T, Simon J, Gross R, Klimmek O, Kröger A.
    Arch Microbiol; 2002 Sep 15; 178(3):202-7. PubMed ID: 12189421
    [Abstract] [Full Text] [Related]

  • 15. Structure and function of formate-dependent cytochrome c nitrite reductase, NrfA.
    Einsle O.
    Methods Enzymol; 2011 Sep 15; 496():399-422. PubMed ID: 21514473
    [Abstract] [Full Text] [Related]

  • 16. NapGH components of the periplasmic nitrate reductase of Escherichia coli K-12: location, topology and physiological roles in quinol oxidation and redox balancing.
    Brondijk TH, Nilavongse A, Filenko N, Richardson DJ, Cole JA.
    Biochem J; 2004 Apr 01; 379(Pt 1):47-55. PubMed ID: 14674886
    [Abstract] [Full Text] [Related]

  • 17. Cytochrome c nitrite reductase from Wolinella succinogenes. Structure at 1.6 A resolution, inhibitor binding, and heme-packing motifs.
    Einsle O, Stach P, Messerschmidt A, Simon J, Kröger A, Huber R, Kroneck PM.
    J Biol Chem; 2000 Dec 15; 275(50):39608-16. PubMed ID: 10984487
    [Abstract] [Full Text] [Related]

  • 18. Role of individual nap gene cluster products in NapC-independent nitrate respiration of Wolinella succinogenes.
    Kern M, Mager AM, Simon J.
    Microbiology (Reading); 2007 Nov 15; 153(Pt 11):3739-3747. PubMed ID: 17975082
    [Abstract] [Full Text] [Related]

  • 19. Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea.
    Zumft WG, Kroneck PM.
    Adv Microb Physiol; 2007 Nov 15; 52():107-227. PubMed ID: 17027372
    [Abstract] [Full Text] [Related]

  • 20. Production and consumption of nitrous oxide in nitrate-ammonifying Wolinella succinogenes cells.
    Luckmann M, Mania D, Kern M, Bakken LR, Frostegård Å, Simon J.
    Microbiology (Reading); 2014 Aug 15; 160(Pt 8):1749-1759. PubMed ID: 24781903
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.