These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
78 related items for PubMed ID: 15225769
1. Emerging insights into the coactivator role of NCoA62/SKIP in Vitamin D-mediated transcription. MacDonald PN, Dowd DR, Zhang C, Gu C. J Steroid Biochem Mol Biol; 2004 May; 89-90(1-5):179-86. PubMed ID: 15225769 [Abstract] [Full Text] [Related]
2. Nuclear coactivator-62 kDa/Ski-interacting protein is a nuclear matrix-associated coactivator that may couple vitamin D receptor-mediated transcription and RNA splicing. Zhang C, Dowd DR, Staal A, Gu C, Lian JB, van Wijnen AJ, Stein GS, MacDonald PN. J Biol Chem; 2003 Sep 12; 278(37):35325-36. PubMed ID: 12840015 [Abstract] [Full Text] [Related]
3. Ternary complexes and cooperative interplay between NCoA-62/Ski-interacting protein and steroid receptor coactivators in vitamin D receptor-mediated transcription. Zhang C, Baudino TA, Dowd DR, Tokumaru H, Wang W, MacDonald PN. J Biol Chem; 2001 Nov 02; 276(44):40614-20. PubMed ID: 11514567 [Abstract] [Full Text] [Related]
4. SKIP modifies gene expression by affecting both transcription and splicing. Nagai K, Yamaguchi T, Takami T, Kawasumi A, Aizawa M, Masuda N, Shimizu M, Tominaga S, Ito T, Tsukamoto T, Osumi T. Biochem Biophys Res Commun; 2004 Apr 02; 316(2):512-7. PubMed ID: 15020246 [Abstract] [Full Text] [Related]
5. The genes of the coactivator TIF2 and the corepressor SMRT are primary 1alpha,25(OH)2D3 targets. Dunlop TW, Väisänen S, Frank C, Carlberg C. J Steroid Biochem Mol Biol; 2004 May 02; 89-90(1-5):257-60. PubMed ID: 15225781 [Abstract] [Full Text] [Related]
6. Vitamin D regulated keratinocyte differentiation: role of coactivators. Bikle DD, Tu CL, Xie Z, Oda Y. J Cell Biochem; 2003 Feb 01; 88(2):290-5. PubMed ID: 12520529 [Abstract] [Full Text] [Related]
7. Subcellular localisation of BAG-1 and its regulation of vitamin D receptor-mediated transactivation and involucrin expression in oral keratinocytes: implications for oral carcinogenesis. Lee SS, Crabb SJ, Janghra N, Carlberg C, Williams AC, Cutress RI, Packham G, Hague A. Exp Cell Res; 2007 Sep 10; 313(15):3222-38. PubMed ID: 17662274 [Abstract] [Full Text] [Related]
8. Superagonistic action of 14-epi-analogs of 1,25-dihydroxyvitamin D explained by vitamin D receptor-coactivator interaction. Eelen G, Verlinden L, Rochel N, Claessens F, De Clercq P, Vandewalle M, Tocchini-Valentini G, Moras D, Bouillon R, Verstuyf A. Mol Pharmacol; 2005 May 10; 67(5):1566-73. PubMed ID: 15728261 [Abstract] [Full Text] [Related]
9. Vitamin D receptor and nuclear receptor coactivators: crucial interactions in vitamin D-mediated transcription. MacDonald PN, Baudino TA, Tokumaru H, Dowd DR, Zhang C. Steroids; 2001 May 10; 66(3-5):171-6. PubMed ID: 11179724 [Abstract] [Full Text] [Related]
10. CHES1/FOXN3 interacts with Ski-interacting protein and acts as a transcriptional repressor. Scott KL, Plon SE. Gene; 2005 Oct 10; 359():119-26. PubMed ID: 16102918 [Abstract] [Full Text] [Related]
11. Lipopolysaccharide negatively modulates vitamin D action by down-regulating expression of vitamin D-induced VDR in human monocytic THP-1 cells. Pramanik R, Asplin JR, Lindeman C, Favus MJ, Bai S, Coe FL. Cell Immunol; 2004 Oct 10; 232(1-2):137-43. PubMed ID: 15876428 [Abstract] [Full Text] [Related]
12. The vitamin D receptor gene FokI polymorphism: functional impact on the immune system. van Etten E, Verlinden L, Giulietti A, Ramos-Lopez E, Branisteanu DD, Ferreira GB, Overbergh L, Verstuyf A, Bouillon R, Roep BO, Badenhoop K, Mathieu C. Eur J Immunol; 2007 Feb 10; 37(2):395-405. PubMed ID: 17274004 [Abstract] [Full Text] [Related]
14. High-throughput system for analyzing ligand-induced cofactor recruitment by vitamin D receptor. Arai MA, Takeyama K, Ito S, Kato S, Chen TC, Kittaka A. Bioconjug Chem; 2007 May 10; 18(3):614-20. PubMed ID: 17408240 [Abstract] [Full Text] [Related]
15. The human Ski-interacting protein functionally substitutes for the yeast PRP45 gene. Figueroa JD, Hayman MJ. Biochem Biophys Res Commun; 2004 Jul 09; 319(4):1105-9. PubMed ID: 15194481 [Abstract] [Full Text] [Related]
16. Interactions of SKIP/NCoA-62, TFIIB, and retinoid X receptor with vitamin D receptor helix H10 residues. Barry JB, Leong GM, Church WB, Issa LL, Eisman JA, Gardiner EM. J Biol Chem; 2003 Mar 07; 278(10):8224-8. PubMed ID: 12529369 [Abstract] [Full Text] [Related]
17. 1,25-Dihydroxyvitamin D3 up-regulates the renal vitamin D receptor through indirect gene activation and receptor stabilization. Healy KD, Frahm MA, DeLuca HF. Arch Biochem Biophys; 2005 Jan 15; 433(2):466-73. PubMed ID: 15581603 [Abstract] [Full Text] [Related]
18. Induction of nephrin gene expression by selective cooperation of the retinoic acid receptor and the vitamin D receptor. Okamura M, Takano Y, Saito Y, Yao J, Kitamura M. Nephrol Dial Transplant; 2009 Oct 15; 24(10):3006-12. PubMed ID: 19474283 [Abstract] [Full Text] [Related]
19. Vitamin D receptor gene polymorphisms in relation to Vitamin D related disease states. Uitterlinden AG, Fang Y, van Meurs JB, van Leeuwen H, Pols HA. J Steroid Biochem Mol Biol; 2004 May 15; 89-90(1-5):187-93. PubMed ID: 15225770 [Abstract] [Full Text] [Related]
20. Synergistic action of vitamin D and retinoic acid restricts invasion of macrophages by pathogenic mycobacteria. Anand PK, Kaul D, Sharma M. J Microbiol Immunol Infect; 2008 Feb 15; 41(1):17-25. PubMed ID: 18327422 [Abstract] [Full Text] [Related] Page: [Next] [New Search]