These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Molecular basis of the selective activity of vitamin D analogues. Carlberg C. J Cell Biochem; 2003 Feb 01; 88(2):274-81. PubMed ID: 12520526 [Abstract] [Full Text] [Related]
4. Corepressor excess shifts the two-side chain vitamin D analog Gemini from an agonist to an inverse agonist of the vitamin D receptor. Gonzalez MM, Samenfeld P, Peräkylä M, Carlberg C. Mol Endocrinol; 2003 Oct 01; 17(10):2028-38. PubMed ID: 12843209 [Abstract] [Full Text] [Related]
7. A structural basis for the species-specific antagonism of 26,23-lactones on vitamin D signaling. Peräkylä M, Molnár F, Carlberg C. Chem Biol; 2004 Aug 01; 11(8):1147-56. PubMed ID: 15324816 [Abstract] [Full Text] [Related]
8. Carboxylic ester antagonists of 1alpha,25-dihydroxyvitamin D(3) show cell-specific actions. Herdick M, Steinmeyer A, Carlberg C. Chem Biol; 2000 Nov 01; 7(11):885-94. PubMed ID: 11094341 [Abstract] [Full Text] [Related]
9. Antagonist- and inverse agonist-driven interactions of the vitamin D receptor and the constitutive androstane receptor with corepressor protein. Lempiäinen H, Molnár F, Macias Gonzalez M, Peräkylä M, Carlberg C. Mol Endocrinol; 2005 Sep 01; 19(9):2258-72. PubMed ID: 15905360 [Abstract] [Full Text] [Related]
10. Current understanding of the function of the nuclear vitamin D receptor in response to its natural and synthetic ligands. Carlberg C. Recent Results Cancer Res; 2003 Sep 01; 164():29-42. PubMed ID: 12899512 [Abstract] [Full Text] [Related]
11. The impact of functional vitamin D(3) receptor conformations on DNA-dependent vitamin D(3) signaling. Quack M, Carlberg C. Mol Pharmacol; 2000 Feb 01; 57(2):375-84. PubMed ID: 10648648 [Abstract] [Full Text] [Related]
12. Applications of the Vitamin D sterol-Vitamin D receptor (VDR) conformational ensemble model. Mizwicki MT, Bishop JE, Norman AW. Steroids; 2005 Feb 01; 70(5-7):464-71. PubMed ID: 15862832 [Abstract] [Full Text] [Related]
13. Structural investigation of the ligand binding domain of the zebrafish VDR in complexes with 1alpha,25(OH)2D3 and Gemini: purification, crystallization and preliminary X-ray diffraction analysis. Ciesielski F, Rochel N, Mitschler A, Kouzmenko A, Moras D. J Steroid Biochem Mol Biol; 2004 May 01; 89-90(1-5):55-9. PubMed ID: 15225747 [Abstract] [Full Text] [Related]
15. Gene regulatory potential of 1alpha,25-dihydroxyvitamin D(3) analogues with two side chains. Bury Y, Herdick M, Uskokovic MR, Carlberg C. J Cell Biochem Suppl; 2001 May 01; Suppl 36():179-90. PubMed ID: 11455583 [Abstract] [Full Text] [Related]
16. The genes of the coactivator TIF2 and the corepressor SMRT are primary 1alpha,25(OH)2D3 targets. Dunlop TW, Väisänen S, Frank C, Carlberg C. J Steroid Biochem Mol Biol; 2004 May 01; 89-90(1-5):257-60. PubMed ID: 15225781 [Abstract] [Full Text] [Related]
17. Three-dimensional model of the ligand binding domain of the nuclear receptor for 1alpha,25-dihydroxy-vitamin D(3). Norman AW, Adams D, Collins ED, Okamura WH, Fletterick RJ. J Cell Biochem; 1999 Sep 01; 74(3):323-33. PubMed ID: 10412035 [Abstract] [Full Text] [Related]
20. Structure-function relationships of vitamin D including ligand recognition by the vitamin D receptor. Yamada S, Shimizu M, Yamamoto K. Med Res Rev; 2003 Jan 01; 23(1):89-115. PubMed ID: 12424754 [Abstract] [Full Text] [Related] Page: [Next] [New Search]