These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
210 related items for PubMed ID: 1522596
21. The crystal structure of trypanothione reductase from the human pathogen Trypanosoma cruzi at 2.3 A resolution. Zhang Y, Bond CS, Bailey S, Cunningham ML, Fairlamb AH, Hunter WN. Protein Sci; 1996 Jan; 5(1):52-61. PubMed ID: 8771196 [Abstract] [Full Text] [Related]
22. Trypanothione reductase of Trypanosoma congolense: gene isolation, primary sequence determination, and comparison to glutathione reductase. Shames SL, Kimmel BE, Peoples OP, Agabian N, Walsh CT. Biochemistry; 1988 Jul 12; 27(14):5014-9. PubMed ID: 3167026 [Abstract] [Full Text] [Related]
24. Docking and molecular dynamics studies at trypanothione reductase and glutathione reductase active sites. Iribarne F, Paulino M, Aguilera S, Murphy M, Tapia O. J Mol Model; 2002 May 12; 8(5):173-83. PubMed ID: 12111385 [Abstract] [Full Text] [Related]
25. Enzymes of the trypanothione metabolism as targets for antitrypanosomal drug development. Schmidt A, Krauth-Siegel RL. Curr Top Med Chem; 2002 Nov 12; 2(11):1239-59. PubMed ID: 12171583 [Abstract] [Full Text] [Related]
26. Naegleria fowleri: a free-living highly pathogenic amoeba contains trypanothione/trypanothione reductase and glutathione/glutathione reductase systems. Ondarza RN, Hurtado G, Tamayo E, Iturbe A, Hernández E. Exp Parasitol; 2006 Nov 12; 114(3):141-6. PubMed ID: 16620809 [Abstract] [Full Text] [Related]
27. Molecular studies on trypanothione reductase, a target for antiparasitic drugs. Walsh C, Bradley M, Nadeau K. Trends Biochem Sci; 1991 Aug 12; 16(8):305-9. PubMed ID: 1957352 [Abstract] [Full Text] [Related]
28. Glutathione and trypanothione in parasitic hydroperoxide metabolism. Flohé L, Hecht HJ, Steinert P. Free Radic Biol Med; 1999 Nov 12; 27(9-10):966-84. PubMed ID: 10569629 [Abstract] [Full Text] [Related]
29. Design, synthesis and biological evaluation of new potent 5-nitrofuryl derivatives as anti-Trypanosoma cruzi agents. Studies of trypanothione binding site of trypanothione reductase as target for rational design. Aguirre G, Cabrera E, Cerecetto H, Di Maio R, González M, Seoane G, Duffaut A, Denicola A, Gil MJ, Martínez-Merino V. Eur J Med Chem; 2004 May 12; 39(5):421-31. PubMed ID: 15110968 [Abstract] [Full Text] [Related]
30. Trypanosoma cruzi trypanothione reductase. Crystallization, unit cell dimensions and structure solution. Zhang Y, Bailey S, Naismith JH, Bond CS, Habash J, McLaughlin P, Papiz MZ, Borges A, Cunningham M, Fairlamb AH. J Mol Biol; 1993 Aug 20; 232(4):1217-20. PubMed ID: 8371273 [Abstract] [Full Text] [Related]
31. Catalysis and structural properties of Leishmania infantum glyoxalase II: trypanothione specificity and phylogeny. Silva MS, Barata L, Ferreira AE, Romão S, Tomás AM, Freire AP, Cordeiro C. Biochemistry; 2008 Jan 08; 47(1):195-204. PubMed ID: 18052346 [Abstract] [Full Text] [Related]
33. Specific peptide inhibitors of trypanothione reductase with backbone structures unrelated to that of substrate: potential rational drug design lead frameworks. McKie JH, Garforth J, Jaouhari R, Chan C, Yin H, Besheya T, Fairlamb AH, Douglas KT. Amino Acids; 2001 Jan 08; 20(2):145-53. PubMed ID: 11332449 [Abstract] [Full Text] [Related]
34. A unique cascade of oxidoreductases catalyses trypanothione-mediated peroxide metabolism in Crithidia fasciculata. Nogoceke E, Gommel DU, Kiess M, Kalisz HM, Flohé L. Biol Chem; 1997 Aug 08; 378(8):827-36. PubMed ID: 9377478 [Abstract] [Full Text] [Related]
35. Mono- and dithiol glutaredoxins in the trypanothione-based redox metabolism of pathogenic trypanosomes. Comini MA, Krauth-Siegel RL, Bellanda M. Antioxid Redox Signal; 2013 Sep 01; 19(7):708-22. PubMed ID: 22978520 [Abstract] [Full Text] [Related]
36. Cloning and characterization of the two enzymes responsible for trypanothione biosynthesis in Crithidia fasciculata. Tetaud E, Manai F, Barrett MP, Nadeau K, Walsh CT, Fairlamb AH. J Biol Chem; 1998 Jul 31; 273(31):19383-90. PubMed ID: 9677355 [Abstract] [Full Text] [Related]
37. Properties of trypanothione synthetase from Trypanosoma brucei. Oza SL, Ariyanayagam MR, Aitcheson N, Fairlamb AH. Mol Biochem Parasitol; 2003 Sep 31; 131(1):25-33. PubMed ID: 12967709 [Abstract] [Full Text] [Related]
38. Structural insights into the enzymes of the trypanothione pathway: targets for antileishmaniasis drugs. Colotti G, Baiocco P, Fiorillo A, Boffi A, Poser E, Chiaro FD, Ilari A. Future Med Chem; 2013 Oct 31; 5(15):1861-75. PubMed ID: 24144416 [Abstract] [Full Text] [Related]
39. Structures of tryparedoxins revealing interaction with trypanothione. Hofmann B, Budde H, Bruns K, Guerrero SA, Kalisz HM, Menge U, Montemartini M, Nogoceke E, Steinert P, Wissing JB, Flohé L, Hecht HJ. Biol Chem; 2001 Mar 31; 382(3):459-71. PubMed ID: 11347894 [Abstract] [Full Text] [Related]
40. A single enzyme catalyses formation of Trypanothione from glutathione and spermidine in Trypanosoma cruzi. Oza SL, Tetaud E, Ariyanayagam MR, Warnon SS, Fairlamb AH. J Biol Chem; 2002 Sep 27; 277(39):35853-61. PubMed ID: 12121990 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]