These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
150 related items for PubMed ID: 15233751
1. Long-term potentiation of transmitter exocytosis expressed by Ca2+-induced Ca2+ release from thapsigargin-sensitive Ca2+ stores in preganglionic nerve terminals. Cong YL, Takeuchi S, Tokuno H, Kuba K. Eur J Neurosci; 2004 Jul; 20(2):419-26. PubMed ID: 15233751 [Abstract] [Full Text] [Related]
2. Type-3 ryanodine receptor involved in Ca2+-induced Ca2+ release and transmitter exocytosis at frog motor nerve terminals. Kubota M, Narita K, Murayama T, Suzuki S, Soga S, Usukura J, Ogawa Y, Kuba K. Cell Calcium; 2005 Dec; 38(6):557-67. PubMed ID: 16157373 [Abstract] [Full Text] [Related]
3. Differential contribution of extracellular and intracellular calcium sources to basal transmission and long-term potentiation in the sympathetic ganglion of the rat. Vargas R, Cifuentes F, Morales MA. Dev Neurobiol; 2007 Apr; 67(5):589-602. PubMed ID: 17443810 [Abstract] [Full Text] [Related]
4. Lead inhibited N-methyl-D-aspartate receptor-independent long-term potentiation involved ryanodine-sensitive calcium stores in rat hippocampal area CA1. Li XM, Gu Y, She JQ, Zhu DM, Niu ZD, Wang M, Chen JT, Sun LG, Ruan DY. Neuroscience; 2006 May 12; 139(2):463-73. PubMed ID: 16457957 [Abstract] [Full Text] [Related]
5. Role of presynaptic and postsynaptic IP3-dependent intracellular calcium release in long-term potentiation in sympathetic ganglion of the rat. Vargas R, Cifuentes F, Morales MA. Synapse; 2011 May 12; 65(5):441-8. PubMed ID: 20853445 [Abstract] [Full Text] [Related]
6. Long-term potentiation of nicotinic synaptic transmission in rat superior cervical ganglia produced by phorbol ester and tetanic stimulation. Heppner TJ, Fiekers JF. Auton Neurosci; 2003 Apr 30; 105(1):35-44. PubMed ID: 12742189 [Abstract] [Full Text] [Related]
7. Presynaptic activity and Ca2+ entry are required for the maintenance of NMDA receptor-independent LTP at visual cortical excitatory synapses. Liu HN, Kurotani T, Ren M, Yamada K, Yoshimura Y, Komatsu Y. J Neurophysiol; 2004 Aug 30; 92(2):1077-87. PubMed ID: 15277600 [Abstract] [Full Text] [Related]
8. Glutamate release increases during mossy-CA3 LTP but not during Schaffer-CA1 LTP. Kawamura Y, Manita S, Nakamura T, Inoue M, Kudo Y, Miyakawa H. Eur J Neurosci; 2004 Mar 30; 19(6):1591-600. PubMed ID: 15066155 [Abstract] [Full Text] [Related]
9. Effects of an indene-derivative, TN-871, on synaptic transmission in a sympathetic ganglion: presynaptic actions on neurotransmitter release. Shen YL, Hirai K, Katayama Y. Bull Tokyo Med Dent Univ; 1995 Mar 30; 42(1):19-29. PubMed ID: 7895315 [Abstract] [Full Text] [Related]
10. Differential expression of calcium channels in sympathetic and parasympathetic preganglionic inputs to neurons in paracervical ganglia of guinea-pigs. Jobling P, Gibbins IL, Lewis RJ, Morris JL. Neuroscience; 2004 Mar 30; 127(2):455-66. PubMed ID: 15262335 [Abstract] [Full Text] [Related]
11. Dopamine D1/5 receptor-mediated long-term potentiation of intrinsic excitability in rat prefrontal cortical neurons: Ca2+-dependent intracellular signaling. Chen L, Bohanick JD, Nishihara M, Seamans JK, Yang CR. J Neurophysiol; 2007 Mar 30; 97(3):2448-64. PubMed ID: 17229830 [Abstract] [Full Text] [Related]
12. Neurosteroid pregnenolone sulfate enhances glutamatergic synaptic transmission by facilitating presynaptic calcium currents at the calyx of Held of immature rats. Hige T, Fujiyoshi Y, Takahashi T. Eur J Neurosci; 2006 Oct 30; 24(7):1955-66. PubMed ID: 17040476 [Abstract] [Full Text] [Related]
13. Long-term potentiation of transmitter release induced by repetitive presynaptic activities in bull-frog sympathetic ganglia. Koyano K, Kuba K, Minota S. J Physiol; 1985 Feb 30; 359():219-33. PubMed ID: 2860240 [Abstract] [Full Text] [Related]
14. Long-term potentiation induced by a sustained rise in the intraterminal Ca2+ in bull-frog sympathetic ganglia. Minota S, Kumamoto E, Kitakoga O, Kuba K. J Physiol; 1991 Apr 30; 435():421-38. PubMed ID: 1685189 [Abstract] [Full Text] [Related]
15. Functional coupling of Ca(2+) channels to ryanodine receptors at presynaptic terminals. Amplification of exocytosis and plasticity. Narita K, Akita T, Hachisuka J, Huang S, Ochi K, Kuba K. J Gen Physiol; 2000 Apr 30; 115(4):519-32. PubMed ID: 10736317 [Abstract] [Full Text] [Related]
16. Induction of hippocampal long-term depression requires release of Ca2+ from separate presynaptic and postsynaptic intracellular stores. Reyes M, Stanton PK. J Neurosci; 1996 Oct 01; 16(19):5951-60. PubMed ID: 8815877 [Abstract] [Full Text] [Related]
17. Postsynaptic IP3 receptor-mediated Ca2+ release modulates synaptic transmission in hippocampal neurons. Kelly PT, Mackinnon RL, Dietz RV, Maher BJ, Wang J. Brain Res Mol Brain Res; 2005 Apr 27; 135(1-2):232-48. PubMed ID: 15857686 [Abstract] [Full Text] [Related]
18. Enhancement of Ca2+-induced Ca2+ release by cyclic ADP-ribose in frog motor nerve terminals. Hachisuka J, Soga-Sakakibara S, Kubota M, Narita K, Kuba K. Neuroscience; 2007 Apr 25; 146(1):123-34. PubMed ID: 17320303 [Abstract] [Full Text] [Related]
19. G-protein-coupled GABAB receptors inhibit Ca2+ channels and modulate transmitter release in descending turtle spinal cord terminal synapsing motoneurons. Castro A, Aguilar J, Elias D, Felix R, Delgado-Lezama R. J Comp Neurol; 2007 Aug 10; 503(5):642-54. PubMed ID: 17559099 [Abstract] [Full Text] [Related]
20. Low-frequency stimulation induces a new form of LTP, metabotropic glutamate (mGlu5) receptor- and PKA-dependent, in the CA1 area of the rat hippocampus. Lanté F, de Jésus Ferreira MC, Guiramand J, Récasens M, Vignes M. Hippocampus; 2006 Aug 10; 16(4):345-60. PubMed ID: 16302229 [Abstract] [Full Text] [Related] Page: [Next] [New Search]