These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


182 related items for PubMed ID: 15234254

  • 1. Brain-derived neurotrophic factor facilitates glutamate and inhibits GABA release from hippocampal synaptosomes through different mechanisms.
    Canas N, Pereira IT, Ribeiro JA, Sebastião AM.
    Brain Res; 2004 Jul 30; 1016(1):72-8. PubMed ID: 15234254
    [Abstract] [Full Text] [Related]

  • 2. Brain-derived neurotrophic factor inhibits GABA uptake by the rat hippocampal nerve terminals.
    Vaz SH, Cristóvão-Ferreira S, Ribeiro JA, Sebastião AM.
    Brain Res; 2008 Jul 11; 1219():19-25. PubMed ID: 18539266
    [Abstract] [Full Text] [Related]

  • 3. Adenosine A2A receptor activation is determinant for BDNF actions upon GABA and glutamate release from rat hippocampal synaptosomes.
    Vaz SH, Lérias SR, Parreira S, Diógenes MJ, Sebastião AM.
    Purinergic Signal; 2015 Dec 11; 11(4):607-12. PubMed ID: 26452489
    [Abstract] [Full Text] [Related]

  • 4. Calcium influx through presynaptic 5-HT3 receptors facilitates GABA release in the hippocampus: in vitro slice and synaptosome studies.
    Turner TJ, Mokler DJ, Luebke JI.
    Neuroscience; 2004 Dec 11; 129(3):703-18. PubMed ID: 15541891
    [Abstract] [Full Text] [Related]

  • 5. BDNF induces glutamate release in cerebrocortical nerve terminals and in cortical astrocytes.
    Pascual M, Climent E, Guerri C.
    Neuroreport; 2001 Aug 28; 12(12):2673-7. PubMed ID: 11522946
    [Abstract] [Full Text] [Related]

  • 6. Activation of gamma-aminobutyric acid GAT-1 transporters on glutamatergic terminals of mouse spinal cord mediates glutamate release through anion channels and by transporter reversal.
    Raiteri L, Stigliani S, Patti L, Usai C, Bucci G, Diaspro A, Raiteri M, Bonanno G.
    J Neurosci Res; 2005 May 01; 80(3):424-33. PubMed ID: 15789377
    [Abstract] [Full Text] [Related]

  • 7. A new function for glycine GlyT2 transporters: Stimulation of γ-aminobutyric acid release from cerebellar nerve terminals through GAT1 transporter reversal and Ca(2+)-dependent anion channels.
    Milanese M, Romei C, Usai C, Oliveri M, Raiteri L.
    J Neurosci Res; 2014 Mar 01; 92(3):398-408. PubMed ID: 24273061
    [Abstract] [Full Text] [Related]

  • 8. BDNF up-regulates evoked GABAergic transmission in developing hippocampus by potentiating presynaptic N- and P/Q-type Ca2+ channels signalling.
    Baldelli P, Novara M, Carabelli V, Hernández-Guijo JM, Carbone E.
    Eur J Neurosci; 2002 Dec 01; 16(12):2297-310. PubMed ID: 12492424
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Brain-derived neurotrophic factor promotes the maturation of GABAergic mechanisms in cultured hippocampal neurons.
    Yamada MK, Nakanishi K, Ohba S, Nakamura T, Ikegaya Y, Nishiyama N, Matsuki N.
    J Neurosci; 2002 Sep 01; 22(17):7580-5. PubMed ID: 12196581
    [Abstract] [Full Text] [Related]

  • 11. BDNF potentiates spontaneous Ca2+ oscillations in cultured hippocampal neurons.
    Sakai N, Yamada M, Numakawa T, Ogura A, Hatanaka H.
    Brain Res; 1997 Dec 19; 778(2):318-28. PubMed ID: 9459549
    [Abstract] [Full Text] [Related]

  • 12. Effects of gabapentin and pregabalin on K+-evoked 3H-GABA and 3H-glutamate release from human neocortical synaptosomes.
    Brawek B, Löffler M, Weyerbrock A, Feuerstein TJ.
    Naunyn Schmiedebergs Arch Pharmacol; 2009 Apr 19; 379(4):361-9. PubMed ID: 19002437
    [Abstract] [Full Text] [Related]

  • 13. Differential desensitization of ionotropic non-NMDA receptors having distinct neuronal location and function.
    Pittaluga A, Bonfanti A, Raiteri M.
    Naunyn Schmiedebergs Arch Pharmacol; 1997 Jul 19; 356(1):29-38. PubMed ID: 9228187
    [Abstract] [Full Text] [Related]

  • 14. Depolarization by K+ and glutamate activates different neurotransmitter release mechanisms in GABAergic neurons: vesicular versus non-vesicular release of GABA.
    Belhage B, Hansen GH, Schousboe A.
    Neuroscience; 1993 Jun 19; 54(4):1019-34. PubMed ID: 8101980
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. GABA induces norepinephrine exocytosis from hippocampal noradrenergic axon terminals by a dual mechanism involving different voltage-sensitive calcium channels.
    Fassio A, Rossi F, Bonanno G, Raiteri M.
    J Neurosci Res; 1999 Aug 01; 57(3):324-31. PubMed ID: 10412023
    [Abstract] [Full Text] [Related]

  • 18. Functional interaction between neuropeptide Y receptors and modulation of calcium channels in the rat hippocampus.
    Silva AP, Carvalho AP, Carvalho CM, Malva JO.
    Neuropharmacology; 2003 Feb 01; 44(2):282-92. PubMed ID: 12623227
    [Abstract] [Full Text] [Related]

  • 19. gamma-Aminobutyric acid release from synaptosomes as influenced by Ca2+ and Ca2+ channel blockers.
    Carvalho CM, Santos SV, Carvalho AP.
    Eur J Pharmacol; 1986 Nov 12; 131(1):1-12. PubMed ID: 3816939
    [Abstract] [Full Text] [Related]

  • 20. Trkb receptors modulation of glutamate release is limited to a subset of nerve terminals in the adult rat hippocampus.
    Pereira DB, Rebola N, Rodrigues RJ, Cunha RA, Carvalho AP, Duarte CB.
    J Neurosci Res; 2006 Apr 12; 83(5):832-44. PubMed ID: 16477614
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.