These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
160 related items for PubMed ID: 15236867
1. Extracellular histamine level in the frontal cortex is positively correlated with the amount of wakefulness in rats. Chu M, Huang ZL, Qu WM, Eguchi N, Yao MH, Urade Y. Neurosci Res; 2004 Aug; 49(4):417-20. PubMed ID: 15236867 [Abstract] [Full Text] [Related]
2. An adenosine A receptor agonist induces sleep by increasing GABA release in the tuberomammillary nucleus to inhibit histaminergic systems in rats. Hong ZY, Huang ZL, Qu WM, Eguchi N, Urade Y, Hayaishi O. J Neurochem; 2005 Mar; 92(6):1542-9. PubMed ID: 15748171 [Abstract] [Full Text] [Related]
3. Altered sleep-wake characteristics and lack of arousal response to H3 receptor antagonist in histamine H1 receptor knockout mice. Huang ZL, Mochizuki T, Qu WM, Hong ZY, Watanabe T, Urade Y, Hayaishi O. Proc Natl Acad Sci U S A; 2006 Mar 21; 103(12):4687-92. PubMed ID: 16537376 [Abstract] [Full Text] [Related]
4. Behavioral state-related changes of extracellular serotonin concentration in the pedunculopontine tegmental nucleus: a microdialysis study in freely moving animals. Strecker RE, Thakkar MM, Porkka-Heiskanen T, Dauphin LJ, Bjørkum AA, McCarley RW. Sleep Res Online; 1999 Mar 21; 2(2):21-7. PubMed ID: 11421239 [Abstract] [Full Text] [Related]
5. On-line detection of extracellular levels of serotonin in dorsal raphe nucleus and frontal cortex over the sleep/wake cycle in the freely moving rat. Portas CM, Bjorvatn B, Fagerland S, Grønli J, Mundal V, Sørensen E, Ursin R. Neuroscience; 1998 Apr 21; 83(3):807-14. PubMed ID: 9483564 [Abstract] [Full Text] [Related]
6. Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep--wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. Léna I, Parrot S, Deschaux O, Muffat-Joly S, Sauvinet V, Renaud B, Suaud-Chagny MF, Gottesmann C. J Neurosci Res; 2005 Sep 15; 81(6):891-9. PubMed ID: 16041801 [Abstract] [Full Text] [Related]
10. Drug delivery through a chronically implanted stomach catheter improves efficiency of evaluating wake-promoting components. Qu WM, Huang ZL, Matsumoto N, Xu XH, Urade Y. J Neurosci Methods; 2008 Oct 30; 175(1):58-63. PubMed ID: 18761374 [Abstract] [Full Text] [Related]
11. Histamine release in the basal forebrain mediates cortical activation through cholinergic neurons. Zant JC, Rozov S, Wigren HK, Panula P, Porkka-Heiskanen T. J Neurosci; 2012 Sep 19; 32(38):13244-54. PubMed ID: 22993440 [Abstract] [Full Text] [Related]
12. Amino acid release from the rat oral pontine reticular nucleus across the sleep-wakefulness cycle. Hasegawa T, Azum S, Inoué S. J Med Dent Sci; 2000 Mar 19; 47(1):87-93. PubMed ID: 12162531 [Abstract] [Full Text] [Related]
13. [Variations of hypothalamic and cortical prostaglandins and monoamines reveal transitions in arousal states: microdialysis study in the rat]. Nicolaidis S, Gerozissis K, Orosco M. Rev Neurol (Paris); 2001 Nov 19; 157(11 Pt 2):S26-33. PubMed ID: 11924034 [Abstract] [Full Text] [Related]
14. Selective stimulation of orexin receptor type 2 promotes wakefulness in freely behaving rats. Akanmu MA, Honda K. Brain Res; 2005 Jun 28; 1048(1-2):138-45. PubMed ID: 15919057 [Abstract] [Full Text] [Related]
15. Neurophysiologic effects at low level 1.8 GHz radiofrequency field exposure: a multiparametric approach on freely moving rats. Crouzier D, Debouzy JC, Bourbon F, Collin A, Perrin A, Testylier G. Pathol Biol (Paris); 2007 Jun 28; 55(3-4):134-42. PubMed ID: 16884860 [Abstract] [Full Text] [Related]