These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
316 related items for PubMed ID: 15255893
41. Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library. Leeds JA, Boyd D, Huber DR, Sonoda GK, Luu HT, Engelman DM, Beckwith J. J Mol Biol; 2001 Oct 12; 313(1):181-95. PubMed ID: 11601855 [Abstract] [Full Text] [Related]
42. The Na+-specific interaction between the LysR-type regulator, NhaR, and the nhaA gene encoding the Na+/H+ antiporter of Escherichia coli. Carmel O, Rahav-Manor O, Dover N, Shaanan B, Padan E. EMBO J; 1997 Oct 01; 16(19):5922-9. PubMed ID: 9312050 [Abstract] [Full Text] [Related]
43. Identification of amino acid residues of the Agrobacterium tumefaciens quorum-sensing regulator TraR that are critical for positive control of transcription. White CE, Winans SC. Mol Microbiol; 2005 Mar 01; 55(5):1473-86. PubMed ID: 15720554 [Abstract] [Full Text] [Related]
44. A hydrophobic patch on the flap-tip helix of E.coli RNA polymerase mediates sigma(70) region 4 function. Geszvain K, Gruber TM, Mooney RA, Gross CA, Landick R. J Mol Biol; 2004 Oct 22; 343(3):569-87. PubMed ID: 15465046 [Abstract] [Full Text] [Related]
45. AfsR recruits RNA polymerase to the afsS promoter: a model for transcriptional activation by SARPs. Tanaka A, Takano Y, Ohnishi Y, Horinouchi S. J Mol Biol; 2007 Jun 01; 369(2):322-33. PubMed ID: 17434533 [Abstract] [Full Text] [Related]
46. Solution structure of the C-terminal transcriptional activator domain of FixJ from Sinorhizobium meliloti and its recognition of the fixK promoter. Kurashima-Ito K, Kasai Y, Hosono K, Tamura K, Oue S, Isogai M, Ito Y, Nakamura H, Shiro Y. Biochemistry; 2005 Nov 15; 44(45):14835-44. PubMed ID: 16274231 [Abstract] [Full Text] [Related]
47. Mutational analysis of the helix-turn-helix region of Bacillus subtilis response regulator DegU, and identification of cis-acting sequences for DegU in the aprE and comK promoters. Shimane K, Ogura M. J Biochem; 2004 Sep 15; 136(3):387-97. PubMed ID: 15598897 [Abstract] [Full Text] [Related]
48. Crystal structure of the DNA-binding domain of BldD, a central regulator of aerial mycelium formation in Streptomyces coelicolor A3(2). Kim IK, Lee CJ, Kim MK, Kim JM, Kim JH, Yim HS, Cha SS, Kang SO. Mol Microbiol; 2006 Jun 15; 60(5):1179-93. PubMed ID: 16689794 [Abstract] [Full Text] [Related]
49. Vibrio cholerae AphA uses a novel mechanism for virulence gene activation that involves interaction with the LysR-type regulator AphB at the tcpPH promoter. Kovacikova G, Lin W, Skorupski K. Mol Microbiol; 2004 Jul 15; 53(1):129-42. PubMed ID: 15225309 [Abstract] [Full Text] [Related]
50. A ToxR-based two-hybrid system for the detection of periplasmic and cytoplasmic protein-protein interactions in Escherichia coli: minimal requirements for specific DNA binding and transcriptional activation. Hennecke F, Müller A, Meister R, Strelow A, Behrens S. Protein Eng Des Sel; 2005 Oct 15; 18(10):477-86. PubMed ID: 16141314 [Abstract] [Full Text] [Related]
51. Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins. Toulokhonov I, Artsimovitch I, Landick R. Science; 2001 Apr 27; 292(5517):730-3. PubMed ID: 11326100 [Abstract] [Full Text] [Related]
52. The solution structure of the periplasmic domain of the TonB system ExbD protein reveals an unexpected structural homology with siderophore-binding proteins. Garcia-Herrero A, Peacock RS, Howard SP, Vogel HJ. Mol Microbiol; 2007 Nov 27; 66(4):872-89. PubMed ID: 17927700 [Abstract] [Full Text] [Related]
53. NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility. Partridge JD, Bodenmiller DM, Humphrys MS, Spiro S. Mol Microbiol; 2009 Aug 27; 73(4):680-94. PubMed ID: 19656291 [Abstract] [Full Text] [Related]
54. The cysP promoter of Salmonella typhimurium: characterization of two binding sites for CysB protein, studies of in vivo transcription initiation, and demonstration of the anti-inducer effects of thiosulfate. Hryniewicz MM, Kredich NM. J Bacteriol; 1991 Sep 27; 173(18):5876-86. PubMed ID: 1909324 [Abstract] [Full Text] [Related]
55. The LysR-type regulator AtzR binding site: DNA sequences involved in activation, repression and cyanuric acid-dependent repositioning. Porrúa O, García-Jaramillo M, Santero E, Govantes F. Mol Microbiol; 2007 Oct 27; 66(2):410-27. PubMed ID: 17854404 [Abstract] [Full Text] [Related]
56. Characterization of ResDE-dependent fnr transcription in Bacillus subtilis. Geng H, Zhu Y, Mullen K, Zuber CS, Nakano MM. J Bacteriol; 2007 Mar 27; 189(5):1745-55. PubMed ID: 17189364 [Abstract] [Full Text] [Related]
57. The C-terminal domain of the alpha subunit of Escherichia coli RNA polymerase is required for efficient rho-dependent transcription termination. Kainz M, Gourse RL. J Mol Biol; 1998 Dec 18; 284(5):1379-90. PubMed ID: 9878357 [Abstract] [Full Text] [Related]
58. Structural characterization of the interaction of the delta and alpha subunits of the Escherichia coli F1F0-ATP synthase by NMR spectroscopy. Wilkens S, Borchardt D, Weber J, Senior AE. Biochemistry; 2005 Sep 06; 44(35):11786-94. PubMed ID: 16128580 [Abstract] [Full Text] [Related]
59. Stoichiometry of binding of CysB to the cysJIH, cysK, and cysP promoter regions of Salmonella typhimurium. Hryniewicz MM, Kredich NM. J Bacteriol; 1994 Jun 06; 176(12):3673-82. PubMed ID: 8206845 [Abstract] [Full Text] [Related]
60. ArgR-dependent repression of arginine and histidine transport genes in Escherichia coli K-12. Caldara M, Minh PN, Bostoen S, Massant J, Charlier D. J Mol Biol; 2007 Oct 19; 373(2):251-67. PubMed ID: 17850814 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]