These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


431 related items for PubMed ID: 15258389

  • 21. Analysis of non-Newtonian liquids using a microfluidic capillary viscometer.
    Srivastava N, Burns MA.
    Anal Chem; 2006 Mar 01; 78(5):1690-6. PubMed ID: 16503624
    [Abstract] [Full Text] [Related]

  • 22. Model-independent relationships between hematocrit, blood viscosity, and yield stress derived from Couette viscometry data.
    Yeow YL, Wickramasinghe SR, Leong YK, Han B.
    Biotechnol Prog; 2002 Mar 01; 18(5):1068-75. PubMed ID: 12363359
    [Abstract] [Full Text] [Related]

  • 23. Reference intervals for whole blood viscosity using the analytical performance-evaluated scanning capillary tube viscometer.
    Jung JM, Lee DH, Kim KT, Choi MS, Cho YG, Lee HS, Choi SI, Lee SR, Kim DS.
    Clin Biochem; 2014 Apr 01; 47(6):489-93. PubMed ID: 24503006
    [Abstract] [Full Text] [Related]

  • 24. Mass-controlled capillary viscometer for a Newtonian liquid: viscosity of water at different temperatures.
    Digilov RM, Reiner M.
    Rev Sci Instrum; 2007 Mar 01; 78(3):035112. PubMed ID: 17411222
    [Abstract] [Full Text] [Related]

  • 25. Evaluation of a torsional-vibrating technique for the hemorheological characterization.
    Travagli V, Zanardi I, Boschi L, Turchetti V, Forconi S.
    Clin Hemorheol Microcirc; 2006 Mar 01; 35(1-2):283-9. PubMed ID: 16899944
    [Abstract] [Full Text] [Related]

  • 26. [A tentative analysis on the principle of capillary tube viscometer].
    Qin R, Liang Y, Zhang Y.
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Oct 01; 26(5):992-5. PubMed ID: 19947475
    [Abstract] [Full Text] [Related]

  • 27. High-shear-rate capillary viscometer for inkjet inks.
    Wang X, Carr WW, Bucknall DG, Morris JF.
    Rev Sci Instrum; 2010 Jun 01; 81(6):065106. PubMed ID: 20590268
    [Abstract] [Full Text] [Related]

  • 28. Micro-Viscometer for Measuring Shear-Varying Blood Viscosity over a Wide-Ranging Shear Rate.
    Kim BJ, Lee SY, Jee S, Atajanov A, Yang S.
    Sensors (Basel); 2017 Jun 20; 17(6):. PubMed ID: 28632151
    [Abstract] [Full Text] [Related]

  • 29. Capillary viscometer for fully automated measurement of the concentration and shear dependence of the viscosity of macromolecular solutions.
    Grupi A, Minton AP.
    Anal Chem; 2012 Dec 18; 84(24):10732-6. PubMed ID: 23130673
    [Abstract] [Full Text] [Related]

  • 30. Studies of electrorheological properties of blood.
    Antonova N, Riha P.
    Clin Hemorheol Microcirc; 2006 Dec 18; 35(1-2):19-29. PubMed ID: 16899902
    [Abstract] [Full Text] [Related]

  • 31. Catheter-based impedance measurements in the right atrium for continuously monitoring hematocrit and estimating blood viscosity changes; an in vivo feasibility study in swine.
    Pop GA, Chang ZY, Slager CJ, Kooij BJ, van Deel ED, Moraru L, Quak J, Meijer GC, Duncker DJ.
    Biosens Bioelectron; 2004 Jul 15; 19(12):1685-93. PubMed ID: 15142603
    [Abstract] [Full Text] [Related]

  • 32. Time dependent variation of human blood conductivity as a method for an estimation of RBC aggregation.
    Antonova N, Riha P, Ivanov I.
    Clin Hemorheol Microcirc; 2008 Jul 15; 39(1-4):69-78. PubMed ID: 18503112
    [Abstract] [Full Text] [Related]

  • 33. Effects of a new perfluorocarbon emulsion on human plasma and whole-blood viscosity in the presence of albumin, hydroxyethyl starch, or modified fluid gelatin: an in vitro rheologic approach.
    Jouan-Hureaux V, Audonnet-Blaise S, Lacatusu D, Krafft MP, Dewachter P, Cauchois G, Stoltz JF, Longrois D, Menu P.
    Transfusion; 2006 Nov 15; 46(11):1892-8. PubMed ID: 17076843
    [Abstract] [Full Text] [Related]

  • 34. A simple capillary viscometer based on the ideal gas law.
    Phu Pham LH, Bautista L, Vargas DC, Luo X.
    RSC Adv; 2018 Aug 24; 8(53):30441-30447. PubMed ID: 35546843
    [Abstract] [Full Text] [Related]

  • 35. Theory and design of disposable clinical blood viscometer.
    Litt M, Kron RE, Litt SE.
    Biorheology; 1988 Aug 24; 25(4):697-712. PubMed ID: 3252922
    [Abstract] [Full Text] [Related]

  • 36. Characteristics of blood flow resistance under transverse vibration: red blood cell suspension in Dextran-40.
    Shin S, Ku Y, Suh JS, Moon SY, Jang JY.
    Ann Biomed Eng; 2003 Oct 24; 31(9):1077-83. PubMed ID: 14582610
    [Abstract] [Full Text] [Related]

  • 37. Shear-dependent aggregation characteristics of red blood cells in a pressure-driven microfluidic channel.
    Shin S, Park MS, Ku YH, Suh JS.
    Clin Hemorheol Microcirc; 2006 Oct 24; 34(1-2):353-61. PubMed ID: 16543657
    [Abstract] [Full Text] [Related]

  • 38. [Comparison of whole blood viscosity in vascular diseases].
    Kowal P, Marcinkowska-Gapinska A, Elikowski W, Chałupka Z.
    Pol Merkur Lekarski; 2003 Dec 24; 15(90):515-7. PubMed ID: 15058250
    [Abstract] [Full Text] [Related]

  • 39. Hemorheological disturbances and characteristic parameters in patients with cerebrovascular disease.
    Antonova N, Velcheva I.
    Clin Hemorheol Microcirc; 1999 Dec 24; 21(3-4):405-8. PubMed ID: 10711777
    [Abstract] [Full Text] [Related]

  • 40. Variations of whole blood viscosity using Rheolog-a new scanning capillary viscometer.
    Wang S, Boss AH, Kensey KR, Rosenson RS.
    Clin Chim Acta; 2003 Jun 24; 332(1-2):79-82. PubMed ID: 12763283
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 22.