These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


431 related items for PubMed ID: 15258389

  • 41. Effect of chronic kidney disease on red blood cell rheology.
    Brimble KS, McFarlane A, Winegard N, Crowther M, Churchill DN.
    Clin Hemorheol Microcirc; 2006; 34(3):411-20. PubMed ID: 16614465
    [Abstract] [Full Text] [Related]

  • 42. Obtaining the shear stress versus shear rate relationship and yield stress of blood from capillary viscometry data by Tikhonov regularization.
    Yeow YL, Leong YK, Wickramasinghe SR, Han B.
    Biotechnol Prog; 2002; 18(4):879-84. PubMed ID: 12153325
    [Abstract] [Full Text] [Related]

  • 43. Pressure-driven capillary viscometer: fundamental challenges in transient flow viscometry.
    Digilov RM.
    Rev Sci Instrum; 2011 Dec; 82(12):125111. PubMed ID: 22225253
    [Abstract] [Full Text] [Related]

  • 44. Correlations in some pathogenetic factors and values of hemorheological parameters in age-related macular degeneration.
    Michalska-Malecka K, Slowinska L, Dorecka M, Romaniuk W.
    Clin Hemorheol Microcirc; 2008 Dec; 38(3):209-16. PubMed ID: 18239263
    [Abstract] [Full Text] [Related]

  • 45. Capillary-based instrument for the simultaneous measurement of solution viscosity and solute diffusion coefficient at pressures up to 2000 bar and implications for ultrahigh pressure liquid chromatography.
    Kaiser TJ, Thompson JW, Mellors JS, Jorgenson JW.
    Anal Chem; 2009 Apr 15; 81(8):2860-8. PubMed ID: 19298084
    [Abstract] [Full Text] [Related]

  • 46. A comparative study of blood viscometers of 3 different types.
    Oh JS, Prabhakaran P, Seo DK, Kim DY, Lee W, Ahn KH.
    Clin Hemorheol Microcirc; 2024 Apr 15; 88(2):211-219. PubMed ID: 38905037
    [Abstract] [Full Text] [Related]

  • 47. Blood fluidity and thermography in patients with diabetes mellitus and coronary artery disease in comparison to healthy subjects.
    Marcinkowska-Gapińska A, Kowal P.
    Clin Hemorheol Microcirc; 2006 Apr 15; 35(4):473-9. PubMed ID: 17148846
    [Abstract] [Full Text] [Related]

  • 48. Blood viscometer applying electromagnetically spinning method.
    Fukunaga K, Onuki M, Ohtsuka Y, Hirano T, Sakai K, Ohgoe Y, Katoh A, Yaguchi T, Funakubo A, Fukui Y.
    J Artif Organs; 2013 Sep 15; 16(3):359-67. PubMed ID: 23575974
    [Abstract] [Full Text] [Related]

  • 49. Numerical simulation of blood flow through microvascular capillary networks.
    Pozrikidis C.
    Bull Math Biol; 2009 Aug 15; 71(6):1520-41. PubMed ID: 19267162
    [Abstract] [Full Text] [Related]

  • 50. Nonlinear flow affects hydrodynamic forces and neutrophil adhesion rates in cone-plate viscometers.
    Shankaran H, Neelamegham S.
    Biophys J; 2001 Jun 15; 80(6):2631-48. PubMed ID: 11371440
    [Abstract] [Full Text] [Related]

  • 51. Noninvasive evaluation of wall shear stress on retinal microcirculation in humans.
    Nagaoka T, Yoshida A.
    Invest Ophthalmol Vis Sci; 2006 Mar 15; 47(3):1113-9. PubMed ID: 16505049
    [Abstract] [Full Text] [Related]

  • 52. [Presentation of a clinical hemoviscosimeter].
    Lelièvre JC, Delgallo H, Lacombe C, Bucherer C.
    J Mal Vasc; 1993 Mar 15; 18(2):153-6. PubMed ID: 8350018
    [Abstract] [Full Text] [Related]

  • 53. Viscosity measurements of DNA solutions with and without condensing agents.
    Laesecke A, Burger JL.
    Biorheology; 2014 Mar 15; 51(1):15-28. PubMed ID: 24598380
    [Abstract] [Full Text] [Related]

  • 54. Blood rheological characterization using the thickness-shear mode resonator.
    Bandey HL, Cernosek RW, Lee WE, Ondrovic LE.
    Biosens Bioelectron; 2004 Jul 15; 19(12):1657-65. PubMed ID: 15142600
    [Abstract] [Full Text] [Related]

  • 55. Scanning of viscosity in sputum.
    Jenssen AO.
    Scand J Respir Dis; 1976 Jul 15; 57(1):31-6. PubMed ID: 1273542
    [Abstract] [Full Text] [Related]

  • 56. Erythrocyte transport efficacy of human blood: a rheological point of view.
    Bogar L, Juricskay I, Kesmarky G, Kenyeres P, Toth K.
    Eur J Clin Invest; 2005 Nov 15; 35(11):687-90. PubMed ID: 16269018
    [Abstract] [Full Text] [Related]

  • 57. 3D printed microfluidic viscometer based on the co-flowing stream.
    Hong H, Song JM, Yeom E.
    Biomicrofluidics; 2019 Jan 15; 13(1):014104. PubMed ID: 30867875
    [Abstract] [Full Text] [Related]

  • 58. A Rapid Capillary-Pressure Driven Micro-Channel to Demonstrate Newtonian Fluid Behavior of Zebrafish Blood at High Shear Rates.
    Lee J, Chou TC, Kang D, Kang H, Chen J, Baek KI, Wang W, Ding Y, Carlo DD, Tai YC, Hsiai TK.
    Sci Rep; 2017 May 16; 7(1):1980. PubMed ID: 28512313
    [Abstract] [Full Text] [Related]

  • 59. [Effect of temperature on rheologic properties of blood and internal viscosity of erythrocytes].
    Urbanová R.
    Cas Lek Cesk; 1996 Oct 23; 135(20):660-3. PubMed ID: 8998812
    [Abstract] [Full Text] [Related]

  • 60. The influence of suspending phase viscosity on the passage of red blood cells through capillary-size micropores.
    Fisher TC, Van Der Waart FJ, Meiselman HJ.
    Biorheology; 1996 Oct 23; 33(2):153-68. PubMed ID: 8679962
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 22.