These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
699 related items for PubMed ID: 15264253
1. Empirical force fields for biological macromolecules: overview and issues. Mackerell AD. J Comput Chem; 2004 Oct; 25(13):1584-604. PubMed ID: 15264253 [Abstract] [Full Text] [Related]
2. Comparison of protein force fields for molecular dynamics simulations. Guvench O, MacKerell AD. Methods Mol Biol; 2008 Oct; 443():63-88. PubMed ID: 18446282 [Abstract] [Full Text] [Related]
3. Development and current status of the CHARMM force field for nucleic acids. MacKerell AD, Banavali N, Foloppe N. Biopolymers; 2008 Oct; 56(4):257-65. PubMed ID: 11754339 [Abstract] [Full Text] [Related]
4. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. Mackerell AD, Feig M, Brooks CL. J Comput Chem; 2004 Aug; 25(11):1400-15. PubMed ID: 15185334 [Abstract] [Full Text] [Related]
5. Molecular dynamics simulation of nucleic acids: successes, limitations, and promise. Cheatham TE, Young MA. Biopolymers; 2004 Aug; 56(4):232-56. PubMed ID: 11754338 [Abstract] [Full Text] [Related]
6. Improved treatment of the protein backbone in empirical force fields. MacKerell AD, Feig M, Brooks CL. J Am Chem Soc; 2004 Jan 28; 126(3):698-9. PubMed ID: 14733527 [Abstract] [Full Text] [Related]
7. CHARMM additive and polarizable force fields for biophysics and computer-aided drug design. Vanommeslaeghe K, MacKerell AD. Biochim Biophys Acta; 2015 May 28; 1850(5):861-871. PubMed ID: 25149274 [Abstract] [Full Text] [Related]
8. Using PC clusters to evaluate the transferability of molecular mechanics force fields for proteins. Okur A, Strockbine B, Hornak V, Simmerling C. J Comput Chem; 2003 Jan 15; 24(1):21-31. PubMed ID: 12483672 [Abstract] [Full Text] [Related]
10. Towards an accurate representation of electrostatics in classical force fields: efficient implementation of multipolar interactions in biomolecular simulations. Sagui C, Pedersen LG, Darden TA. J Chem Phys; 2004 Jan 01; 120(1):73-87. PubMed ID: 15267263 [Abstract] [Full Text] [Related]
14. A new GROMOS force field for hexopyranose-based carbohydrates. Lins RD, Hünenberger PH. J Comput Chem; 2005 Oct 01; 26(13):1400-12. PubMed ID: 16035088 [Abstract] [Full Text] [Related]
15. Semi-empirical molecular orbital methods including dispersion corrections for the accurate prediction of the full range of intermolecular interactions in biomolecules. McNamara JP, Hillier IH. Phys Chem Chem Phys; 2007 May 21; 9(19):2362-70. PubMed ID: 17492099 [Abstract] [Full Text] [Related]
16. Empirical force-field assessment: The interplay between backbone torsions and noncovalent term scaling. Sorin EJ, Pande VS. J Comput Chem; 2005 May 21; 26(7):682-90. PubMed ID: 15754305 [Abstract] [Full Text] [Related]