These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Electrostatics of proteins in dielectric solvent continua. II. First applications in molecular dynamics simulations. Stork M, Tavan P. J Chem Phys; 2007 Apr 28; 126(16):165106. PubMed ID: 17477638 [Abstract] [Full Text] [Related]
3. The van der Waals interaction between protein molecules in an electrolyte solution. Song X, Zhao X. J Chem Phys; 2004 Jan 22; 120(4):2005-9. PubMed ID: 15268335 [Abstract] [Full Text] [Related]
5. On removal of charge singularity in Poisson-Boltzmann equation. Cai Q, Wang J, Zhao HK, Luo R. J Chem Phys; 2009 Apr 14; 130(14):145101. PubMed ID: 19368474 [Abstract] [Full Text] [Related]
6. Electrostatics of proteins in dielectric solvent continua. I. Newton's third law marries qE forces. Stork M, Tavan P. J Chem Phys; 2007 Apr 28; 126(16):165105. PubMed ID: 17477637 [Abstract] [Full Text] [Related]
9. Direct observation of salt effects on molecular interactions through explicit-solvent molecular dynamics simulations: differential effects on electrostatic and hydrophobic interactions and comparisons to Poisson-Boltzmann theory. Thomas AS, Elcock AH. J Am Chem Soc; 2006 Jun 21; 128(24):7796-806. PubMed ID: 16771493 [Abstract] [Full Text] [Related]
10. Continuum molecular electrostatics, salt effects, and counterion binding--a review of the Poisson-Boltzmann theory and its modifications. Grochowski P, Trylska J. Biopolymers; 2008 Feb 21; 89(2):93-113. PubMed ID: 17969016 [Abstract] [Full Text] [Related]
11. Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces. Bonthuis DJ, Netz RR. J Phys Chem B; 2013 Oct 03; 117(39):11397-413. PubMed ID: 24063251 [Abstract] [Full Text] [Related]
12. Implicit solvation based on generalized Born theory in different dielectric environments. Feig M, Im W, Brooks CL. J Chem Phys; 2004 Jan 08; 120(2):903-11. PubMed ID: 15267926 [Abstract] [Full Text] [Related]
14. Nonuniform charge scaling (NUCS): a practical approximation of solvent electrostatic screening in proteins. Schwarzl SM, Huang D, Smith JC, Fischer S. J Comput Chem; 2005 Oct 08; 26(13):1359-71. PubMed ID: 16021598 [Abstract] [Full Text] [Related]
15. Boundary element solution of the linear Poisson-Boltzmann equation and a multipole method for the rapid calculation of forces on macromolecules in solution. Bordner AJ, Huber GA. J Comput Chem; 2003 Feb 08; 24(3):353-67. PubMed ID: 12548727 [Abstract] [Full Text] [Related]
16. Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution. Lu B, Zhou YC, Huber GA, Bond SD, Holst MJ, McCammon JA. J Chem Phys; 2007 Oct 07; 127(13):135102. PubMed ID: 17919055 [Abstract] [Full Text] [Related]
17. Linear response theory: an alternative to PB and GB methods for the analysis of molecular dynamics trajectories? Morreale A, de la Cruz X, Meyer T, Gelpí JL, Luque FJ, Orozco M. Proteins; 2004 Nov 15; 57(3):458-67. PubMed ID: 15382247 [Abstract] [Full Text] [Related]
18. Electrostatic potentials of proteins in water: a structured continuum approach. Hildebrandt A, Blossey R, Rjasanow S, Kohlbacher O, Lenhof HP. Bioinformatics; 2007 Jan 15; 23(2):e99-103. PubMed ID: 17237112 [Abstract] [Full Text] [Related]
19. Proton binding to proteins: pK(a) calculations with explicit and implicit solvent models. Simonson T, Carlsson J, Case DA. J Am Chem Soc; 2004 Apr 07; 126(13):4167-80. PubMed ID: 15053606 [Abstract] [Full Text] [Related]
20. On the nature of liquid junction and membrane potentials. Perram JW, Stiles PJ. Phys Chem Chem Phys; 2006 Sep 28; 8(36):4200-13. PubMed ID: 16971988 [Abstract] [Full Text] [Related] Page: [Next] [New Search]