These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


417 related items for PubMed ID: 15268949

  • 1. Effect of uncouplers on endogenous respiration and ferrous iron oxidation in a chemolithoautotrophic bacterium Acidithiobacillus (Thiobacillus) ferrooxidans.
    Chen Y, Suzuki I.
    FEMS Microbiol Lett; 2004 Aug 01; 237(1):139-45. PubMed ID: 15268949
    [Abstract] [Full Text] [Related]

  • 2. Effects of electron transport inhibitors and uncouplers on the oxidation of ferrous iron and compounds interacting with ferric iron in Acidithiobacillus ferrooxidans.
    Chen Y, Suzuki I.
    Can J Microbiol; 2005 Aug 01; 51(8):695-703. PubMed ID: 16234867
    [Abstract] [Full Text] [Related]

  • 3. Electron transport pathways for the oxidation of endogenous substrate(s) in Acidithiobacillus ferrooxidans.
    Chen Y, Suzuki I.
    Can J Microbiol; 2006 Apr 01; 52(4):317-27. PubMed ID: 16699582
    [Abstract] [Full Text] [Related]

  • 4. Mechanism of oxidation of inorganic sulfur compounds by thiosulfate-grown Thiobacillus thiooxidans.
    Masau RJ, Oh JK, Suzuki I.
    Can J Microbiol; 2001 Apr 01; 47(4):348-58. PubMed ID: 11358175
    [Abstract] [Full Text] [Related]

  • 5. [Effect of Fe3+ ions on Thiobacillus ferrooxidans oxidation of ferrous oxide at various temperatures].
    Kovalenko TV, Karavaĭko GI, Piskunov VP.
    Mikrobiologiia; 1982 Apr 01; 51(1):156-60. PubMed ID: 7070305
    [Abstract] [Full Text] [Related]

  • 6. Transport of sugars and amino acids in bacteria. XV. Comparative studies on the effects of various energy poisons on the oxidative and phosphorylating activities and energy coupling reactions for the active transport systems for amino acids in E. coli.
    Anraku Y, Kin E, Tanaka Y.
    J Biochem; 1975 Jul 01; 78(1):165-79. PubMed ID: 1104599
    [Abstract] [Full Text] [Related]

  • 7. Sulfite oxidation by iron-grown cells of Thiobacillus ferrooxidans at pH 3 possibly involves free radicals, iron, and cytochrome oxidase.
    Harahuc L, Suzuki I.
    Can J Microbiol; 2001 May 01; 47(5):424-30. PubMed ID: 11400733
    [Abstract] [Full Text] [Related]

  • 8. [Effect of pH and temperature on the kinetics of Fe2+ oxidation by Thiobacillus ferrooxidans].
    Moshniakova SA, Karavaiko GI.
    Mikrobiologiia; 1979 May 01; 48(1):49-52. PubMed ID: 34080
    [Abstract] [Full Text] [Related]

  • 9. Novel electrochemical-enzymatic model which quantifies the effect of the solution Eh on the kinetics of ferrous iron oxidation with Acidithiobacillus ferrooxidans.
    Meruane G, Salhe C, Wiertz J, Vargas T.
    Biotechnol Bioeng; 2002 Nov 05; 80(3):280-8. PubMed ID: 12226860
    [Abstract] [Full Text] [Related]

  • 10. Oxidation of elemental sulfur, tetrathionate and ferrous iron by the psychrotolerant Acidithiobacillus strain SS3.
    Kupka D, Liljeqvist M, Nurmi P, Puhakka JA, Tuovinen OH, Dopson M.
    Res Microbiol; 2009 Dec 05; 160(10):767-74. PubMed ID: 19782750
    [Abstract] [Full Text] [Related]

  • 11. Effects of citrinin on iron-redox cycle.
    Da Lozzo EJ, Mangrich AS, Rocha ME, de Oliveira MB, Carnieri EG.
    Cell Biochem Funct; 2002 Mar 05; 20(1):19-29. PubMed ID: 11835267
    [Abstract] [Full Text] [Related]

  • 12. Inhibition of Ca++-stimulated respiration by uncouplers.
    Dargel R, Leikin JN.
    Acta Biol Med Ger; 1975 Mar 05; 34(11-12):1713-21. PubMed ID: 9761
    [Abstract] [Full Text] [Related]

  • 13. Kinetics of anaerobic elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans and protein identification by comparative 2-DE-MS/MS.
    Kucera J, Bouchal P, Cerna H, Potesil D, Janiczek O, Zdrahal Z, Mandl M.
    Antonie Van Leeuwenhoek; 2012 Mar 05; 101(3):561-73. PubMed ID: 22057833
    [Abstract] [Full Text] [Related]

  • 14. Energy generation mechanisms in the in vitro-grown Mycobacterium lepraemurium.
    Ishaque M.
    Int J Lepr Other Mycobact Dis; 1992 Mar 05; 60(1):61-70. PubMed ID: 1318345
    [Abstract] [Full Text] [Related]

  • 15. Gene expression modulation by chalcopyrite and bornite in Acidithiobacillus ferrooxidans.
    Ferraz LF, Verde LC, Reis FC, Alexandrino F, Felício AP, Novo MT, Garcia O, Ottoboni LM.
    Arch Microbiol; 2010 Jul 05; 192(7):531-40. PubMed ID: 20480358
    [Abstract] [Full Text] [Related]

  • 16. Inhibition of uncoupled respiration in tumor cells. A possible role of mitochondrial Ca2+ efflux.
    Gabai VL.
    FEBS Lett; 1993 Aug 23; 329(1-2):67-71. PubMed ID: 7689064
    [Abstract] [Full Text] [Related]

  • 17. Effect of Cyanide on Mitochondrial Membrane Depolarization Induced by Uncouplers.
    Khailova LS, Rokitskaya TI, Kotova EA, Antonenko YN.
    Biochemistry (Mosc); 2017 Oct 23; 82(10):1140-1146. PubMed ID: 29037134
    [Abstract] [Full Text] [Related]

  • 18. [Mathematical model of Thiobacillus ferrooxidans growth on a medium with ferrous iron].
    Petrova TA, Galaktionova NA, Karavaĭko GI, Krylov IuM, Moshniakova SA.
    Mikrobiologiia; 1979 Oct 23; 48(2):235-9. PubMed ID: 35735
    [Abstract] [Full Text] [Related]

  • 19. High-rate ferrous iron oxidation by immobilized Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate.
    Yujian W, Xiaojuan Y, Wei T, Hongyu L.
    J Microbiol Methods; 2007 Feb 23; 68(2):212-7. PubMed ID: 16979768
    [Abstract] [Full Text] [Related]

  • 20. High-rate acidophilic ferrous iron oxidation in a biofilm airlift reactor and the role of the carrier material.
    Ebrahimi S, Fernández Morales FJ, Kleerebezem R, Heijnen JJ, van Loosdrecht MC.
    Biotechnol Bioeng; 2005 May 20; 90(4):462-72. PubMed ID: 15772947
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.