These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
147 related items for PubMed ID: 1527034
1. Functional role of arginine 302 within the lactose permease of Escherichia coli. Matzke EA, Stephenson LJ, Brooker RJ. J Biol Chem; 1992 Sep 25; 267(27):19095-100. PubMed ID: 1527034 [Abstract] [Full Text] [Related]
2. An analysis of lactose permease "sugar specificity" mutations which also affect the coupling between proton and lactose transport. II. Second site revertants of the thiodigalactoside-dependent proton leak by the Val177/Asn319 permease. Eelkema JA, O'Donnell MA, Brooker RJ. J Biol Chem; 1991 Mar 05; 266(7):4139-44. PubMed ID: 1999408 [Abstract] [Full Text] [Related]
3. An analysis of the side chain requirement at position 177 within the lactose permease which confers the ability to recognize maltose. Gram CD, Brooker RJ. J Biol Chem; 1992 Feb 25; 267(6):3841-6. PubMed ID: 1740432 [Abstract] [Full Text] [Related]
4. Functional roles of Glu-269 and Glu-325 within the lactose permease of Escherichia coli. Franco PJ, Brooker RJ. J Biol Chem; 1994 Mar 11; 269(10):7379-86. PubMed ID: 7907327 [Abstract] [Full Text] [Related]
5. An analysis of lactose permease "sugar specificity" mutations which also affect the coupling between proton and lactose transport. I. Val177 and Val177/Asn319 permeases facilitate proton uniport and sugar uniport. Brooker RJ. J Biol Chem; 1991 Mar 05; 266(7):4131-8. PubMed ID: 1999407 [Abstract] [Full Text] [Related]
6. A K319N/E325Q double mutant of the lactose permease cotransports H+ with lactose. Implications for a proposed mechanism of H+/lactose symport. Johnson JL, Brooker RJ. J Biol Chem; 1999 Feb 12; 274(7):4074-81. PubMed ID: 9933600 [Abstract] [Full Text] [Related]
7. The role of transmembrane domain III in the lactose permease of Escherichia coli. Sahin-Tóth M, Frillingos S, Bibi E, Gonzalez A, Kaback HR. Protein Sci; 1994 Dec 12; 3(12):2302-10. PubMed ID: 7756986 [Abstract] [Full Text] [Related]
8. Suppressor analysis of mutations in the loop 2-3 motif of lactose permease: evidence that glycine-64 is an important residue for conformational changes. Jessen-Marshall AE, Parker NJ, Brooker RJ. J Bacteriol; 1997 Apr 12; 179(8):2616-22. PubMed ID: 9098060 [Abstract] [Full Text] [Related]
9. Cysteine scanning mutagenesis of putative transmembrane helices IX and X in the lactose permease of Escherichia coli. Sahin-Tóth M, Kaback HR. Protein Sci; 1993 Jun 12; 2(6):1024-33. PubMed ID: 8318887 [Abstract] [Full Text] [Related]
10. Cysteine-scanning mutagenesis of helix IV and the adjoining loops in the lactose permease of Escherichia coli: Glu126 and Arg144 are essential. off. Frillingos S, Gonzalez A, Kaback HR. Biochemistry; 1997 Nov 25; 36(47):14284-90. PubMed ID: 9400367 [Abstract] [Full Text] [Related]
11. Evidence that the asparagine 322 mutant of the lactose permease transports protons and lactose with a normal stoichiometry and accumulates lactose against a concentration gradient. Franco PJ, Brooker RJ. J Biol Chem; 1991 Apr 15; 266(11):6693-9. PubMed ID: 1849889 [Abstract] [Full Text] [Related]
12. Isolation and characterization of lactose permease mutants with an enhanced recognition of maltose and diminished recognition of cellobiose. Collins JC, Permuth SF, Brooker RJ. J Biol Chem; 1989 Sep 05; 264(25):14698-703. PubMed ID: 2670925 [Abstract] [Full Text] [Related]
13. Characterization of Glu126 and Arg144, two residues that are indispensable for substrate binding in the lactose permease of Escherichia coli. Sahin-Tóth M, le Coutre J, Kharabi D, le Maire G, Lee JC, Kaback HR. Biochemistry; 1999 Jan 12; 38(2):813-9. PubMed ID: 9888822 [Abstract] [Full Text] [Related]
14. Characterization of site-directed mutants in the lac permease of Escherichia coli. 1. Replacement of histidine residues. Püttner IB, Sarkar HK, Padan E, Lolkema JS, Kaback HR. Biochemistry; 1989 Mar 21; 28(6):2525-33. PubMed ID: 2659072 [Abstract] [Full Text] [Related]
15. Isolation and characterization of thiodigalactoside-resistant mutants of the lactose permease which possess an enhanced recognition for maltose. Franco PJ, Eelkema JA, Brooker RJ. J Biol Chem; 1989 Sep 25; 264(27):15988-92. PubMed ID: 2674122 [Abstract] [Full Text] [Related]
16. Site-directed mutagenesis of lysine 319 in the lactose permease of Escherichia coli. Persson B, Roepe PD, Patel L, Lee J, Kaback HR. Biochemistry; 1992 Sep 22; 31(37):8892-7. PubMed ID: 1390676 [Abstract] [Full Text] [Related]
17. Role of glutamate-126 and arginine-144 in the lactose permease of Escherichia coli. Johnson JL, Brooker RJ. Biochemistry; 2003 Feb 04; 42(4):1095-100. PubMed ID: 12549931 [Abstract] [Full Text] [Related]
18. A triple mutant, K319N/H322Q/E325Q, of the lactose permease cotransports H+ with thiodigalactoside. Johnson JL, Lockheart MS, Brooker RJ. J Membr Biol; 2001 Jun 01; 181(3):215-24. PubMed ID: 11420608 [Abstract] [Full Text] [Related]
19. Kinetic analysis of lactose and proton coupling in Glu379 mutants of the lactose transport protein of Streptococcus thermophilus. Poolman B, Knol J, Lolkema JS. J Biol Chem; 1995 Jun 02; 270(22):12995-3003. PubMed ID: 7768891 [Abstract] [Full Text] [Related]
20. Cysteine-scanning mutagenesis of helix II and flanking hydrophilic domains in the lactose permease of Escherichia coli. Frillingos S, Sun J, Gonzalez A, Kaback HR. Biochemistry; 1997 Jan 07; 36(1):269-73. PubMed ID: 8993343 [Abstract] [Full Text] [Related] Page: [Next] [New Search]