These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


332 related items for PubMed ID: 15272858

  • 41. Quantitative structure-pharmacokinetic relationships for drug clearance by using statistical learning methods.
    Yap CW, Li ZR, Chen YZ.
    J Mol Graph Model; 2006 Mar; 24(5):383-95. PubMed ID: 16290201
    [Abstract] [Full Text] [Related]

  • 42. Predictive activity profiling of drugs by topological-fragment-spectra-based support vector machines.
    Kawai K, Fujishima S, Takahashi Y.
    J Chem Inf Model; 2008 Jun; 48(6):1152-60. PubMed ID: 18533712
    [Abstract] [Full Text] [Related]

  • 43. Classification of a diverse set of Tetrahymena pyriformis toxicity chemical compounds from molecular descriptors by statistical learning methods.
    Xue Y, Li H, Ung CY, Yap CW, Chen YZ.
    Chem Res Toxicol; 2006 Aug; 19(8):1030-9. PubMed ID: 16918241
    [Abstract] [Full Text] [Related]

  • 44. Integration of in silico and in vitro tools for scaffold optimization during drug discovery: predicting P-glycoprotein efflux.
    Desai PV, Sawada GA, Watson IA, Raub TJ.
    Mol Pharm; 2013 Apr 01; 10(4):1249-61. PubMed ID: 23363443
    [Abstract] [Full Text] [Related]

  • 45. Development of an in silico model for predicting efflux substrates in Caco-2 cells.
    Zhang L, Balimane PV, Johnson SR, Chong S.
    Int J Pharm; 2007 Oct 01; 343(1-2):98-105. PubMed ID: 17583455
    [Abstract] [Full Text] [Related]

  • 46. Emerging significance of P-glycoprotein in understanding drug disposition and drug interactions in psychopharmacology.
    Carson SW, Ousmanou AD, Hoyler SL.
    Psychopharmacol Bull; 2002 Oct 01; 36(1):67-81. PubMed ID: 12397848
    [Abstract] [Full Text] [Related]

  • 47. Modeling of human cytochrome p450-mediated drug metabolism using unsupervised machine learning approach.
    Korolev D, Balakin KV, Nikolsky Y, Kirillov E, Ivanenkov YA, Savchuk NP, Ivashchenko AA, Nikolskaya T.
    J Med Chem; 2003 Aug 14; 46(17):3631-43. PubMed ID: 12904067
    [Abstract] [Full Text] [Related]

  • 48. In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods.
    Cheng F, Shen J, Yu Y, Li W, Liu G, Lee PW, Tang Y.
    Chemosphere; 2011 Mar 14; 82(11):1636-43. PubMed ID: 21145574
    [Abstract] [Full Text] [Related]

  • 49. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps.
    Marrero-Ponce Y, Iyarreta-Veitía M, Montero-Torres A, Romero-Zaldivar C, Brandt CA, Avila PE, Kirchgatter K, Machado Y.
    J Chem Inf Model; 2005 Mar 14; 45(4):1082-100. PubMed ID: 16045304
    [Abstract] [Full Text] [Related]

  • 50. Molecule kernels: a descriptor- and alignment-free quantitative structure-activity relationship approach.
    Mohr JA, Jain BJ, Obermayer K.
    J Chem Inf Model; 2008 Sep 14; 48(9):1868-81. PubMed ID: 18767832
    [Abstract] [Full Text] [Related]

  • 51. Prediction of fungicidal activities of rice blast disease based on least-squares support vector machines and project pursuit regression.
    Du H, Wang J, Hu Z, Yao X, Zhang X.
    J Agric Food Chem; 2008 Nov 26; 56(22):10785-92. PubMed ID: 18950187
    [Abstract] [Full Text] [Related]

  • 52. Development and validation of k-nearest-neighbor QSPR models of metabolic stability of drug candidates.
    Shen M, Xiao Y, Golbraikh A, Gombar VK, Tropsha A.
    J Med Chem; 2003 Jul 03; 46(14):3013-20. PubMed ID: 12825940
    [Abstract] [Full Text] [Related]

  • 53. Machine learning models for lipophilicity and their domain of applicability.
    Schroeter T, Schwaighofer A, Mika S, Laak AT, Suelzle D, Ganzer U, Heinrich N, Müller KR.
    Mol Pharm; 2007 Jul 03; 4(4):524-38. PubMed ID: 17637064
    [Abstract] [Full Text] [Related]

  • 54. ADME evaluation in drug discovery. 10. Predictions of P-glycoprotein inhibitors using recursive partitioning and naive Bayesian classification techniques.
    Chen L, Li Y, Zhao Q, Peng H, Hou T.
    Mol Pharm; 2011 Jun 06; 8(3):889-900. PubMed ID: 21413792
    [Abstract] [Full Text] [Related]

  • 55. Classification of cytochrome p(450) activities using machine learning methods.
    Hammann F, Gutmann H, Baumann U, Helma C, Drewe J.
    Mol Pharm; 2009 Jun 06; 6(6):1920-6. PubMed ID: 19813762
    [Abstract] [Full Text] [Related]

  • 56. Rapid prediction of chemical metabolism by human UDP-glucuronosyltransferase isoforms using quantum chemical descriptors derived with the electronegativity equalization method.
    Sorich MJ, McKinnon RA, Miners JO, Winkler DA, Smith PA.
    J Med Chem; 2004 Oct 07; 47(21):5311-7. PubMed ID: 15456275
    [Abstract] [Full Text] [Related]

  • 57. Support vector machine for SAR/QSAR of phenethyl-amines.
    Niu B, Lu WC, Yang SS, Cai YD, Li GZ.
    Acta Pharmacol Sin; 2007 Jul 07; 28(7):1075-86. PubMed ID: 17588345
    [Abstract] [Full Text] [Related]

  • 58. In silico screening of estrogen-like chemicals based on different nonlinear classification models.
    Liu H, Papa E, Walker JD, Gramatica P.
    J Mol Graph Model; 2007 Jul 07; 26(1):135-44. PubMed ID: 17293141
    [Abstract] [Full Text] [Related]

  • 59. Predicting human liver microsomal stability with machine learning techniques.
    Sakiyama Y, Yuki H, Moriya T, Hattori K, Suzuki M, Shimada K, Honma T.
    J Mol Graph Model; 2008 Feb 07; 26(6):907-15. PubMed ID: 17683964
    [Abstract] [Full Text] [Related]

  • 60. Prediction of turn types in protein structure by machine-learning classifiers.
    Meissner M, Koch O, Klebe G, Schneider G.
    Proteins; 2009 Feb 01; 74(2):344-52. PubMed ID: 18618702
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.