These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Efficacy of antibodies against the N-terminal of Pseudomonas aeruginosa flagellin for treating infections in a murine burn wound model. Barnea Y, Carmeli Y, Gur E, Kuzmenko B, Gat A, Neville LF, Eren R, Dagan S, Navon-Venezia S. Plast Reconstr Surg; 2006 Jun; 117(7):2284-91. PubMed ID: 16772930 [Abstract] [Full Text] [Related]
3. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. McVay CS, Velásquez M, Fralick JA. Antimicrob Agents Chemother; 2007 Jun; 51(6):1934-8. PubMed ID: 17387151 [Abstract] [Full Text] [Related]
4. Antimicrobial activity and mechanism of action of Nu-3, a protonated modified nucleotide. Cao S, Sun LQ, Wang M. Ann Clin Microbiol Antimicrob; 2011 Jan 14; 10():1. PubMed ID: 21232163 [Abstract] [Full Text] [Related]
6. Efficacy of locally delivered polyclonal immunoglobulin against Pseudomonas aeruginosa infection in a murine burn wound model. Felts AG, Giridhar G, Grainger DW, Slunt JB. Burns; 1999 Aug 14; 25(5):415-23. PubMed ID: 10439150 [Abstract] [Full Text] [Related]
7. Efficacy of purified lactonase and ciprofloxacin in preventing systemic spread of Pseudomonas aeruginosa in murine burn wound model. Gupta P, Chhibber S, Harjai K. Burns; 2015 Feb 14; 41(1):153-62. PubMed ID: 25015706 [Abstract] [Full Text] [Related]
8. Pivotal advance: glycyrrhizin restores the impaired production of beta-defensins in tissues surrounding the burn area and improves the resistance of burn mice to Pseudomonas aeruginosa wound infection. Yoshida T, Yoshida S, Kobayashi M, Herndon DN, Suzuki F. J Leukoc Biol; 2010 Jan 14; 87(1):35-41. PubMed ID: 19843573 [Abstract] [Full Text] [Related]
10. Therapeutic efficacy of an antibiotic-loaded nanosheet in a murine burn-wound infection model. Saito A, Miyazaki H, Fujie T, Ohtsubo S, Kinoshita M, Saitoh D, Takeoka S. Acta Biomater; 2012 Aug 14; 8(8):2932-40. PubMed ID: 22525350 [Abstract] [Full Text] [Related]
11. Glucan phosphate treatment attenuates burn-induced inflammation and improves resistance to Pseudomonas aeruginosa burn wound infection. Lyuksutova OI, Murphey ED, Toliver-Kinsky TE, Lin CY, Cui W, Williams DL, Sherwood ER. Shock; 2005 Mar 14; 23(3):224-32. PubMed ID: 15718919 [Abstract] [Full Text] [Related]
13. Gr-1(+)CD11b(+) cells as an accelerator of sepsis stemming from Pseudomonas aeruginosa wound infection in thermally injured mice. Kobayashi M, Yoshida T, Takeuchi D, Jones VC, Shigematsu K, Herndon DN, Suzuki F. J Leukoc Biol; 2008 Jun 14; 83(6):1354-62. PubMed ID: 18372338 [Abstract] [Full Text] [Related]
14. Passive immunisation against Pseudomonas aeruginosa recombinant flagellin in an experimental model of burn wound sepsis. Faezi S, Sattari M, Mahdavi M, Roudkenar MH. Burns; 2011 Aug 14; 37(5):865-72. PubMed ID: 21334822 [Abstract] [Full Text] [Related]
15. Arginine Is a Critical Substrate for the Pathogenesis of Pseudomonas aeruginosa in Burn Wound Infections. Everett J, Turner K, Cai Q, Gordon V, Whiteley M, Rumbaugh K. mBio; 2017 Mar 14; 8(2):. PubMed ID: 28292986 [Abstract] [Full Text] [Related]
16. Therapy with anti-flagellin A monoclonal antibody limits Pseudomonas aeruginosa invasiveness in a mouse burn wound sepsis model. Barnea Y, Carmeli Y, Neville LF, Kahel-Reifer H, Eren R, Dagan S, Navon-Venezia S. Burns; 2009 May 14; 35(3):390-6. PubMed ID: 18951715 [Abstract] [Full Text] [Related]
17. Topical Bactroban (mupirocin): efficacy in treating burn wounds infected with methicillin-resistant staphylococci. Strock LL, Lee MM, Rutan RL, Desai MH, Robson MC, Herndon DN, Heggers JP. J Burn Care Rehabil; 1990 May 14; 11(5):454-9. PubMed ID: 2123203 [Abstract] [Full Text] [Related]