These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


130 related items for PubMed ID: 15275847

  • 1. A method to combine numerical optimization and EMG data for the estimation of joint moments under dynamic conditions.
    Amarantini D, Martin L.
    J Biomech; 2004 Sep; 37(9):1393-404. PubMed ID: 15275847
    [Abstract] [Full Text] [Related]

  • 2. Calibration of EMG to force for knee muscles is applicable with submaximal voluntary contractions.
    Doorenbosch CA, Joosten A, Harlaar J.
    J Electromyogr Kinesiol; 2005 Aug; 15(4):429-35. PubMed ID: 15811613
    [Abstract] [Full Text] [Related]

  • 3. An EMG-to-force processing approach for determining ankle muscle forces during normal human gait.
    Bogey RA, Perry J, Gitter AJ.
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):302-10. PubMed ID: 16200754
    [Abstract] [Full Text] [Related]

  • 4. A two-step EMG-and-optimization process to estimate muscle force during dynamic movement.
    Amarantini D, Rao G, Berton E.
    J Biomech; 2010 Jun 18; 43(9):1827-30. PubMed ID: 20206935
    [Abstract] [Full Text] [Related]

  • 5. Estimation of hip abduction moment based on body fixed sensors.
    Zijlstra W, Bisseling R.
    Clin Biomech (Bristol); 2004 Oct 18; 19(8):819-27. PubMed ID: 15342154
    [Abstract] [Full Text] [Related]

  • 6. Hamstring antagonist moment estimation using clinically applicable models: Muscle dependency and synergy effects.
    Kellis E, Katis A.
    J Electromyogr Kinesiol; 2008 Feb 18; 18(1):144-53. PubMed ID: 17055745
    [Abstract] [Full Text] [Related]

  • 7. Prediction of joint moments using a neural network model of muscle activations from EMG signals.
    Wang L, Buchanan TS.
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar 18; 10(1):30-7. PubMed ID: 12173737
    [Abstract] [Full Text] [Related]

  • 8. Co-activation alters the linear versus non-linear impression of the EMG-torque relationship of trunk muscles.
    Brown SH, McGill SM.
    J Biomech; 2008 Mar 18; 41(3):491-7. PubMed ID: 18054943
    [Abstract] [Full Text] [Related]

  • 9. Influence of additional load on the moments of the agonist and antagonist muscle groups at the knee joint during closed chain exercise.
    Rao G, Amarantini D, Berton E.
    J Electromyogr Kinesiol; 2009 Jun 18; 19(3):459-66. PubMed ID: 18249140
    [Abstract] [Full Text] [Related]

  • 10. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo.
    Lloyd DG, Besier TF.
    J Biomech; 2003 Jun 18; 36(6):765-76. PubMed ID: 12742444
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Effects of EMG processing on biomechanical models of muscle joint systems: sensitivity of trunk muscle moments, spinal forces, and stability.
    Staudenmann D, Potvin JR, Kingma I, Stegeman DF, van Dieën JH.
    J Biomech; 2007 Jun 18; 40(4):900-9. PubMed ID: 16765965
    [Abstract] [Full Text] [Related]

  • 13. Effect of ankle joint position and electrode placement on the estimation of the antagonistic moment during maximal plantarflexion.
    Mademli L, Arampatzis A, Morey-Klapsing G, Brüggemann GP.
    J Electromyogr Kinesiol; 2004 Oct 18; 14(5):591-7. PubMed ID: 15301777
    [Abstract] [Full Text] [Related]

  • 14. Reliability of a practicable EMG-moment model for antagonist moment prediction.
    Kellis E, Kouvelioti V, Ioakimidis P.
    Neurosci Lett; 2005 Aug 05; 383(3):266-71. PubMed ID: 15955419
    [Abstract] [Full Text] [Related]

  • 15. The effects of interelectrode distance on electromyographic amplitude and mean power frequency during isokinetic and isometric muscle actions of the biceps brachii.
    Beck TW, Housh TJ, Johnson GO, Weir JP, Cramer JT, Coburn JW, Malek MH.
    J Electromyogr Kinesiol; 2005 Oct 05; 15(5):482-95. PubMed ID: 15935960
    [Abstract] [Full Text] [Related]

  • 16. Differences between measured and resultant joint moments during voluntary and artificially elicited isometric knee extension contractions.
    Arampatzis A, Karamanidis K, De Monte G, Stafilidis S, Morey-Klapsing G, Brüggemann GP.
    Clin Biomech (Bristol); 2004 Mar 05; 19(3):277-83. PubMed ID: 15003343
    [Abstract] [Full Text] [Related]

  • 17. Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow.
    Koo TK, Mak AF.
    J Electromyogr Kinesiol; 2005 Feb 05; 15(1):12-26. PubMed ID: 15642650
    [Abstract] [Full Text] [Related]

  • 18. How changing the inversion/eversion foot angle affects the nondriving intersegmental knee moments and the relative activation of the vastii muscles in cycling.
    Gregersen CS, Hull ML, Hakansson NA.
    J Biomech Eng; 2006 Jun 05; 128(3):391-8. PubMed ID: 16706588
    [Abstract] [Full Text] [Related]

  • 19. The impact of adding trunk motion to the interpretation of the role of joint moments during normal walking.
    Patel M, Talaty M, Ounpuu S.
    J Biomech; 2007 Jun 05; 40(16):3563-9. PubMed ID: 17765906
    [Abstract] [Full Text] [Related]

  • 20. Effect of different inertial parameter sets on joint moment calculation during stair ascending and descending.
    Fantozzi S, Stagni R, Cappello A, Leardini A.
    Med Eng Phys; 2005 Jul 05; 27(6):537-41. PubMed ID: 15990070
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.