These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
187 related items for PubMed ID: 15277573
1. Revisiting the role of H+ in chemotactic signaling of sperm. Solzin J, Helbig A, Van Q, Brown JE, Hildebrand E, Weyand I, Kaupp UB. J Gen Physiol; 2004 Aug; 124(2):115-24. PubMed ID: 15277573 [Abstract] [Full Text] [Related]
2. Chemotaxis of Arbacia punctulata spermatozoa to resact, a peptide from the egg jelly layer. Ward GE, Brokaw CJ, Garbers DL, Vacquier VD. J Cell Biol; 1985 Dec; 101(6):2324-9. PubMed ID: 3840805 [Abstract] [Full Text] [Related]
3. The signal flow and motor response controling chemotaxis of sea urchin sperm. Kaupp UB, Solzin J, Hildebrand E, Brown JE, Helbig A, Hagen V, Beyermann M, Pampaloni F, Weyand I. Nat Cell Biol; 2003 Feb; 5(2):109-17. PubMed ID: 12563276 [Abstract] [Full Text] [Related]
4. Niflumic acid disrupts marine spermatozoan chemotaxis without impairing the spatiotemporal detection of chemoattractant gradients. Guerrero A, Espinal J, Wood CD, Rendón JM, Carneiro J, Martínez-Mekler G, Darszon A. J Cell Sci; 2013 Mar 15; 126(Pt 6):1477-87. PubMed ID: 23418354 [Abstract] [Full Text] [Related]
6. A K+-selective cGMP-gated ion channel controls chemosensation of sperm. Strünker T, Weyand I, Bönigk W, Van Q, Loogen A, Brown JE, Kashikar N, Hagen V, Krause E, Kaupp UB. Nat Cell Biol; 2006 Oct 15; 8(10):1149-54. PubMed ID: 16964244 [Abstract] [Full Text] [Related]
7. Different migration patterns of sea urchin and mouse sperm revealed by a microfluidic chemotaxis device. Chang H, Kim BJ, Kim YS, Suarez SS, Wu M. PLoS One; 2013 Oct 15; 8(4):e60587. PubMed ID: 23613731 [Abstract] [Full Text] [Related]
13. Modular analysis of the control of flagellar Ca2+-spike trains produced by CatSper and CaV channels in sea urchin sperm. Priego-Espinosa DA, Darszon A, Guerrero A, González-Cota AL, Nishigaki T, Martínez-Mekler G, Carneiro J. PLoS Comput Biol; 2020 Mar 15; 16(3):e1007605. PubMed ID: 32119665 [Abstract] [Full Text] [Related]
14. Altering the speract-induced ion permeability changes that generate flagellar Ca2+ spikes regulates their kinetics and sea urchin sperm motility. Wood CD, Nishigaki T, Tatsu Y, Yumoto N, Baba SA, Whitaker M, Darszon A. Dev Biol; 2007 Jun 15; 306(2):525-37. PubMed ID: 17467684 [Abstract] [Full Text] [Related]
15. Tuning sperm chemotaxis by calcium burst timing. Guerrero A, Nishigaki T, Carneiro J, Yoshiro Tatsu, Wood CD, Darszon A. Dev Biol; 2010 Aug 01; 344(1):52-65. PubMed ID: 20435032 [Abstract] [Full Text] [Related]
16. Sperm chemotaxis is driven by the slope of the chemoattractant concentration field. Ramírez-Gómez HV, Jimenez Sabinina V, Velázquez Pérez M, Beltran C, Carneiro J, Wood CD, Tuval I, Darszon A, Guerrero A. Elife; 2020 Mar 09; 9():. PubMed ID: 32149603 [Abstract] [Full Text] [Related]
18. Network model predicts that CatSper is the main Ca2+ channel in the regulation of sea urchin sperm motility. Espinal-Enríquez J, Priego-Espinosa DA, Darszon A, Beltrán C, Martínez-Mekler G. Sci Rep; 2017 Jun 26; 7(1):4236. PubMed ID: 28652586 [Abstract] [Full Text] [Related]