These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Heterologous aquaporin (AQY2-1) expression strongly enhances freeze tolerance of Schizosaccharomyces pombe. Tanghe A, Kayingo G, Prior BA, Thevelein JM, Van Dijck P. J Mol Microbiol Biotechnol; 2005; 9(1):52-6. PubMed ID: 16254446 [Abstract] [Full Text] [Related]
24. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation. Aslankoohi E, Rezaei MN, Vervoort Y, Courtin CM, Verstrepen KJ. PLoS One; 2015; 10(3):e0119364. PubMed ID: 25764309 [Abstract] [Full Text] [Related]
25. The yeast osmosensitive mutant fps1Delta transformed by the cauliflower BobTIP1;1 aquaporin withstand a hypo-osmotic shock. Prudent S, Marty F, Charbonnier M. FEBS Lett; 2005 Jul 18; 579(18):3872-80. PubMed ID: 16004998 [Abstract] [Full Text] [Related]
26. Improvement of stress tolerance and leavening ability under multiple baking-associated stress conditions by overexpression of the SNR84 gene in baker's yeast. Lin X, Zhang CY, Bai XW, Feng B, Xiao DG. Int J Food Microbiol; 2015 Mar 16; 197():15-21. PubMed ID: 25555226 [Abstract] [Full Text] [Related]
29. Improving freeze-tolerance of baker's yeast through seamless gene deletion of NTH1 and PUT1. Dong J, Chen D, Wang G, Zhang C, Du L, Liu S, Zhao Y, Xiao D. J Ind Microbiol Biotechnol; 2016 Jun 16; 43(6):817-28. PubMed ID: 26965428 [Abstract] [Full Text] [Related]
30. Influence of ε-poly-l-lysine treated yeast on gluten polymerization and freeze-thaw tolerance of frozen dough. Lu L, Xing JJ, Yang Z, Guo XN, Zhu KX. Food Chem; 2021 May 01; 343():128440. PubMed ID: 33127224 [Abstract] [Full Text] [Related]
31. Identification and classification of genes required for tolerance to high-sucrose stress revealed by genome-wide screening of Saccharomyces cerevisiae. Ando A, Tanaka F, Murata Y, Takagi H, Shima J. FEMS Yeast Res; 2006 Mar 01; 6(2):249-67. PubMed ID: 16487347 [Abstract] [Full Text] [Related]
34. Metabolomic insights into the effect of chickpea protein hydrolysate on the freeze-thaw tolerance of industrial yeasts. Kang S, Xu Y, Kang Y, Rao J, Xiang F, Ku S, Li W, Liu Z, Guo Y, Xu J, Zhu X, Zhou M. Food Chem; 2024 May 01; 439():138143. PubMed ID: 38103490 [Abstract] [Full Text] [Related]
36. ETP1/YHL010c is a novel gene needed for the adaptation of Saccharomyces cerevisiae to ethanol. Snowdon C, Schierholtz R, Poliszczuk P, Hughes S, van der Merwe G. FEMS Yeast Res; 2009 May 01; 9(3):372-80. PubMed ID: 19416103 [Abstract] [Full Text] [Related]
38. Heterologous expression of type I antifreeze peptide GS-5 in baker's yeast increases freeze tolerance and provides enhanced gas production in frozen dough. Panadero J, Randez-Gil F, Prieto JA. J Agric Food Chem; 2005 Dec 28; 53(26):9966-70. PubMed ID: 16366681 [Abstract] [Full Text] [Related]
39. Lipid composition of commercial bakers' yeasts having different freeze-tolerance in frozen dough. Murakami Y, Yokoigawa K, Kawai F, Kawai H. Biosci Biotechnol Biochem; 1996 Nov 28; 60(11):1874-6. PubMed ID: 8987866 [Abstract] [Full Text] [Related]
40. Roles of BOR1, DUR3, and FPS1 in boron transport and tolerance in Saccharomyces cerevisiae. Nozawa A, Takano J, Kobayashi M, von Wirén N, Fujiwara T. FEMS Microbiol Lett; 2006 Sep 28; 262(2):216-22. PubMed ID: 16923078 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]