These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
140 related items for PubMed ID: 15281102
1. Optimized recovery of monoclonal antibodies from transgenic goat milk by microfiltration. Baruah GL, Belfort G. Biotechnol Bioeng; 2004 Aug 05; 87(3):274-85. PubMed ID: 15281102 [Abstract] [Full Text] [Related]
2. A predictive aggregate transport model for microfiltration of combined macromolecular solutions and poly-disperse suspensions: testing model with transgenic goat milk. Baruah GL, Couto D, Belfort G. Biotechnol Prog; 2003 Aug 05; 19(5):1533-40. PubMed ID: 14524716 [Abstract] [Full Text] [Related]
3. Purification of monoclonal antibodies derived from transgenic goat milk by ultrafiltration. Baruah GL, Nayak A, Winkelman E, Belfort G. Biotechnol Bioeng; 2006 Mar 05; 93(4):747-54. PubMed ID: 16255037 [Abstract] [Full Text] [Related]
4. Global model for optimizing crossflow microfiltration and ultrafiltration processes: a new predictive and design tool. Baruah GL, Venkiteshwaran A, Belfort G. Biotechnol Prog; 2005 Mar 05; 21(4):1013-25. PubMed ID: 16080678 [Abstract] [Full Text] [Related]
5. A predictive aggregate transport model for microfiltration of combined macromolecular solutions and poly-disperse suspensions: model development. Baruah GL, Belfort G. Biotechnol Prog; 2003 Mar 05; 19(5):1524-32. PubMed ID: 14524715 [Abstract] [Full Text] [Related]
7. Selective precipitation-assisted recovery of immunoglobulins from bovine serum using controlled-fouling crossflow membrane microfiltration. Venkiteshwaran A, Heider P, Teysseyre L, Belfort G. Biotechnol Bioeng; 2008 Dec 01; 101(5):957-66. PubMed ID: 18553503 [Abstract] [Full Text] [Related]
8. Micellar casein concentrate production with a 3X, 3-stage, uniform transmembrane pressure ceramic membrane process at 50°C. Hurt E, Zulewska J, Newbold M, Barbano DM. J Dairy Sci; 2010 Dec 01; 93(12):5588-600. PubMed ID: 21094730 [Abstract] [Full Text] [Related]
9. Microfiltration of skim milk and modified skim milk using a 0.1-µm ceramic uniform transmembrane pressure system at temperatures of 50, 55, 60, and 65°C. Hurt EE, Adams MC, Barbano DM. J Dairy Sci; 2015 Feb 01; 98(2):765-80. PubMed ID: 25497798 [Abstract] [Full Text] [Related]
10. Production efficiency of micellar casein concentrate using polymeric spiral-wound microfiltration membranes. Beckman SL, Zulewska J, Newbold M, Barbano DM. J Dairy Sci; 2010 Oct 01; 93(10):4506-17. PubMed ID: 20854984 [Abstract] [Full Text] [Related]
12. Effect of membrane morphology on system capacity during normal flow microfiltration. Zydney AL, Ho CC. Biotechnol Bioeng; 2003 Sep 05; 83(5):537-43. PubMed ID: 12827695 [Abstract] [Full Text] [Related]
13. Development and optimization of a carbon dioxide-aided cold microfiltration process for the physical removal of microorganisms and somatic cells from skim milk. Fritsch J, Moraru CI. J Dairy Sci; 2008 Oct 05; 91(10):3744-60. PubMed ID: 18832196 [Abstract] [Full Text] [Related]
14. Tangential flow microfiltration and ultrafiltration for human influenza A virus concentration and purification. Wickramasinghe SR, Kalbfuss B, Zimmermann A, Thom V, Reichl U. Biotechnol Bioeng; 2005 Oct 20; 92(2):199-208. PubMed ID: 16041807 [Abstract] [Full Text] [Related]