These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1718 related items for PubMed ID: 15282312

  • 1. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2.
    Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M.
    Mol Cell Biol; 2004 Aug; 24(16):7130-9. PubMed ID: 15282312
    [Abstract] [Full Text] [Related]

  • 2. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase.
    Furukawa M, Xiong Y.
    Mol Cell Biol; 2005 Jan; 25(1):162-71. PubMed ID: 15601839
    [Abstract] [Full Text] [Related]

  • 3. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex.
    Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M.
    Mol Cell Biol; 2004 Dec; 24(24):10941-53. PubMed ID: 15572695
    [Abstract] [Full Text] [Related]

  • 4. Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway.
    Zhang DD, Lo SC, Sun Z, Habib GM, Lieberman MW, Hannink M.
    J Biol Chem; 2005 Aug 26; 280(34):30091-9. PubMed ID: 15983046
    [Abstract] [Full Text] [Related]

  • 5. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases.
    Villeneuve NF, Lau A, Zhang DD.
    Antioxid Redox Signal; 2010 Dec 01; 13(11):1699-712. PubMed ID: 20486766
    [Abstract] [Full Text] [Related]

  • 6. CAND1-mediated substrate adaptor recycling is required for efficient repression of Nrf2 by Keap1.
    Lo SC, Hannink M.
    Mol Cell Biol; 2006 Feb 01; 26(4):1235-44. PubMed ID: 16449638
    [Abstract] [Full Text] [Related]

  • 7. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase.
    Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA.
    Mol Cell Biol; 2004 Oct 01; 24(19):8477-86. PubMed ID: 15367669
    [Abstract] [Full Text] [Related]

  • 8. Structural and biochemical characterization establishes a detailed understanding of KEAP1-CUL3 complex assembly.
    Adamson RJ, Payne NC, Bartual SG, Mazitschek R, Bullock AN.
    Free Radic Biol Med; 2023 Aug 01; 204():215-225. PubMed ID: 37156295
    [Abstract] [Full Text] [Related]

  • 9. Absolute Amounts and Status of the Nrf2-Keap1-Cul3 Complex within Cells.
    Iso T, Suzuki T, Baird L, Yamamoto M.
    Mol Cell Biol; 2016 Dec 15; 36(24):3100-3112. PubMed ID: 27697860
    [Abstract] [Full Text] [Related]

  • 10. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression.
    McMahon M, Itoh K, Yamamoto M, Hayes JD.
    J Biol Chem; 2003 Jun 13; 278(24):21592-600. PubMed ID: 12682069
    [Abstract] [Full Text] [Related]

  • 11. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62.
    Lau A, Wang XJ, Zhao F, Villeneuve NF, Wu T, Jiang T, Sun Z, White E, Zhang DD.
    Mol Cell Biol; 2010 Jul 13; 30(13):3275-85. PubMed ID: 20421418
    [Abstract] [Full Text] [Related]

  • 12. Specific patterns of electrophile adduction trigger Keap1 ubiquitination and Nrf2 activation.
    Hong F, Sekhar KR, Freeman ML, Liebler DC.
    J Biol Chem; 2005 Sep 09; 280(36):31768-75. PubMed ID: 15985429
    [Abstract] [Full Text] [Related]

  • 13. Diffusion dynamics of the Keap1-Cullin3 interaction in single live cells.
    Baird L, Dinkova-Kostova AT.
    Biochem Biophys Res Commun; 2013 Mar 29; 433(1):58-65. PubMed ID: 23454126
    [Abstract] [Full Text] [Related]

  • 14. Zinc-binding triggers a conformational-switch in the cullin-3 substrate adaptor protein KEAP1 that controls transcription factor NRF2.
    McMahon M, Swift SR, Hayes JD.
    Toxicol Appl Pharmacol; 2018 Dec 01; 360():45-57. PubMed ID: 30261176
    [Abstract] [Full Text] [Related]

  • 15. p97 Negatively Regulates NRF2 by Extracting Ubiquitylated NRF2 from the KEAP1-CUL3 E3 Complex.
    Tao S, Liu P, Luo G, Rojo de la Vega M, Chen H, Wu T, Tillotson J, Chapman E, Zhang DD.
    Mol Cell Biol; 2017 Apr 15; 37(8):. PubMed ID: 28115426
    [Abstract] [Full Text] [Related]

  • 16. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A, Motohashi H.
    Nitric Oxide; 2011 Aug 01; 25(2):153-60. PubMed ID: 21385624
    [Abstract] [Full Text] [Related]

  • 17. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy.
    Shibata T, Ohta T, Tong KI, Kokubu A, Odogawa R, Tsuta K, Asamura H, Yamamoto M, Hirohashi S.
    Proc Natl Acad Sci U S A; 2008 Sep 09; 105(36):13568-73. PubMed ID: 18757741
    [Abstract] [Full Text] [Related]

  • 18. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress.
    Zhang DD, Hannink M.
    Mol Cell Biol; 2003 Nov 09; 23(22):8137-51. PubMed ID: 14585973
    [Abstract] [Full Text] [Related]

  • 19. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution.
    Taguchi K, Motohashi H, Yamamoto M.
    Genes Cells; 2011 Feb 09; 16(2):123-40. PubMed ID: 21251164
    [Abstract] [Full Text] [Related]

  • 20. Unique pattern of component gene disruption in the NRF2 inhibitor KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex in serous ovarian cancer.
    Martinez VD, Vucic EA, Thu KL, Pikor LA, Hubaux R, Lam WL.
    Biomed Res Int; 2014 Feb 09; 2014():159459. PubMed ID: 25114896
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 86.