These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
350 related items for PubMed ID: 15286989
1. Metabolic engineering and protein directed evolution increase the yield of L-phenylalanine synthesized from glucose in Escherichia coli. Báez-Viveros JL, Osuna J, Hernández-Chávez G, Soberón X, Bolívar F, Gosset G. Biotechnol Bioeng; 2004 Aug 20; 87(4):516-24. PubMed ID: 15286989 [Abstract] [Full Text] [Related]
2. Enhanced l-phenylalanine biosynthesis by co-expression of pheA(fbr) and aroF(wt). Zhou H, Liao X, Wang T, Du G, Chen J. Bioresour Technol; 2010 Jun 20; 101(11):4151-6. PubMed ID: 20137911 [Abstract] [Full Text] [Related]
3. Altered glucose transport and shikimate pathway product yields in E. coli. Yi J, Draths KM, Li K, Frost JW. Biotechnol Prog; 2003 Jun 20; 19(5):1450-9. PubMed ID: 14524706 [Abstract] [Full Text] [Related]
4. Expression of a bacterial bi-functional chorismate mutase/prephenate dehydratase modulates primary and secondary metabolism associated with aromatic amino acids in Arabidopsis. Tzin V, Malitsky S, Aharoni A, Galili G. Plant J; 2009 Oct 20; 60(1):156-67. PubMed ID: 19508381 [Abstract] [Full Text] [Related]
5. Metabolic engineering of Escherichia coli to enhance phenylalanine production. Yakandawala N, Romeo T, Friesen AD, Madhyastha S. Appl Microbiol Biotechnol; 2008 Feb 20; 78(2):283-91. PubMed ID: 18080813 [Abstract] [Full Text] [Related]
6. [Expression of genes aroG and pheA in phenylalanine biosynthesis]. Fan C, Zeng X, Chai Y, Jiang P, Huang W. Wei Sheng Wu Xue Bao; 1999 Oct 20; 39(5):430-5. PubMed ID: 12555524 [Abstract] [Full Text] [Related]
7. Integration of E. coli aroG-pheA tandem genes into Corynebacterium glutamicum tyrA locus and its effect on L-phenylalanine biosynthesis. Liu DX, Fan CS, Tao JH, Liang GX, Gao SE, Wang HJ, Li X, Song DX. World J Gastroenterol; 2004 Dec 15; 10(24):3683-7. PubMed ID: 15534933 [Abstract] [Full Text] [Related]
8. Metabolic transcription analysis of engineered Escherichia coli strains that overproduce L-phenylalanine. Báez-Viveros JL, Flores N, Juárez K, Castillo-España P, Bolivar F, Gosset G. Microb Cell Fact; 2007 Sep 19; 6():30. PubMed ID: 17880710 [Abstract] [Full Text] [Related]
9. Stimulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway. Oldiges M, Kunze M, Degenring D, Sprenger GA, Takors R. Biotechnol Prog; 2004 Sep 19; 20(6):1623-33. PubMed ID: 15575692 [Abstract] [Full Text] [Related]
10. Metabolic engineering of Escherichia coli for improving L-3,4-dihydroxyphenylalanine (L-DOPA) synthesis from glucose. Muñoz AJ, Hernández-Chávez G, de Anda R, Martínez A, Bolívar F, Gosset G. J Ind Microbiol Biotechnol; 2011 Nov 19; 38(11):1845-52. PubMed ID: 21512819 [Abstract] [Full Text] [Related]
11. Enhanced production of L-phenylalanine in Corynebacterium glutamicum due to the introduction of Escherichia coli wild-type gene aroH. Zhang C, Zhang J, Kang Z, Du G, Yu X, Wang T, Chen J. J Ind Microbiol Biotechnol; 2013 Jun 19; 40(6):643-51. PubMed ID: 23526182 [Abstract] [Full Text] [Related]
12. Acetate metabolism in Escherichia coli strains lacking phosphoenolpyruvate: carbohydrate phosphotransferase system; evidence of carbon recycling strategies and futile cycles. Sigala JC, Flores S, Flores N, Aguilar C, de Anda R, Gosset G, Bolívar F. J Mol Microbiol Biotechnol; 2009 Jun 19; 16(3-4):224-35. PubMed ID: 18679018 [Abstract] [Full Text] [Related]
13. Cloning, sequencing, and expression of the P-protein gene (pheA) of Pseudomonas stutzeri in Escherichia coli: implications for evolutionary relationships in phenylalanine biosynthesis. Fischer RS, Zhao G, Jensen RA. J Gen Microbiol; 1991 Jun 19; 137(6):1293-301. PubMed ID: 1919506 [Abstract] [Full Text] [Related]
14. Metabolic consequences of phosphotransferase (PTS) mutation in a phenylalanine-producing recombinant Escherichia coli. Chen R, Hatzimanikatis V, Yap WM, Postma PW, Bailey JE. Biotechnol Prog; 1997 Jun 19; 13(6):768-75. PubMed ID: 9413135 [Abstract] [Full Text] [Related]
15. Pathway Engineering for Phenethylamine Production in Escherichia coli. Xu D, Zhang L. J Agric Food Chem; 2020 May 27; 68(21):5917-5926. PubMed ID: 32367713 [Abstract] [Full Text] [Related]
16. Metabolic engineering of Escherichia coli for L-tyrosine production by expression of genes coding for the chorismate mutase domain of the native chorismate mutase-prephenate dehydratase and a cyclohexadienyl dehydrogenase from Zymomonas mobilis. Chávez-Béjar MI, Lara AR, López H, Hernández-Chávez G, Martinez A, Ramírez OT, Bolívar F, Gosset G. Appl Environ Microbiol; 2008 May 27; 74(10):3284-90. PubMed ID: 18344329 [Abstract] [Full Text] [Related]
17. Probing the catalytic mechanism of prephenate dehydratase by site-directed mutagenesis of the Escherichia coli P-protein dehydratase domain. Zhang S, Wilson DB, Ganem B. Biochemistry; 2000 Apr 25; 39(16):4722-8. PubMed ID: 10769128 [Abstract] [Full Text] [Related]
18. [Co-expressions of phosphoenolpyruvate synthetase A (ppsA) and transketolase A (tktA) genes of Escherichia coli]. Li YH, Liu Y, Wang SC, Tong ZY, Xu QS. Sheng Wu Gong Cheng Xue Bao; 2003 May 25; 19(3):301-6. PubMed ID: 15969011 [Abstract] [Full Text] [Related]
19. Process control for enhanced L-phenylalanine production using different recombinant Escherichia coli strains. Gerigk M, Bujnicki R, Ganpo-Nkwenkwa E, Bongaerts J, Sprenger G, Takors R. Biotechnol Bioeng; 2002 Dec 30; 80(7):746-54. PubMed ID: 12402320 [Abstract] [Full Text] [Related]
20. Participation of the Entner-Doudoroff pathway in Escherichia coli strains with an inactive phosphotransferase system (PTS- Glc+) in gluconate and glucose batch cultures. Ponce E, García M, Muñoz ME. Can J Microbiol; 2005 Nov 30; 51(11):975-82. PubMed ID: 16333337 [Abstract] [Full Text] [Related] Page: [Next] [New Search]