These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
142 related items for PubMed ID: 15289028
1. Early neurosensory visual development of the fetus and newborn. Graven SN. Clin Perinatol; 2004 Jun; 31(2):199-216, v. PubMed ID: 15289028 [Abstract] [Full Text] [Related]
2. [Neurosensory visual development of the foetus and newborn and neonatal intensive care units]. Niessen F. Arch Pediatr; 2006 Aug; 13(8):1178-84. PubMed ID: 16857352 [Abstract] [Full Text] [Related]
3. [A preliminary study on development of human visual system in fetus by DiI-tracing]. Qu J, Zhou X, Zhang L, Ni H, Ashwell K, Lu F. Zhonghua Yan Ke Za Zhi; 2002 Sep; 38(9):517-9. PubMed ID: 12410967 [Abstract] [Full Text] [Related]
5. The sequential development of the higher visual centers in the C.N.S. of the quail. Yew DT, Woo HH. Anat Anz; 1979 Feb; 145(5):493-7. PubMed ID: 507377 [Abstract] [Full Text] [Related]
6. The role of nAChR-mediated spontaneous retinal activity in visual system development. Feller MB. J Neurobiol; 2002 Dec; 53(4):556-67. PubMed ID: 12436420 [Abstract] [Full Text] [Related]
7. Development of the mammalian visual system. Shatz CJ. Mead Johnson Symp Perinat Dev Med; 1987 Dec; (29):19-26. PubMed ID: 3332904 [No Abstract] [Full Text] [Related]
8. Functional development of the visual system in human fetus using magnetoencephalography. Eswaran H, Lowery CL, Wilson JD, Murphy P, Preissl H. Exp Neurol; 2004 Nov; 190 Suppl 1():S52-8. PubMed ID: 15498542 [Abstract] [Full Text] [Related]
9. Retinal waves and visual system development. Wong RO. Annu Rev Neurosci; 1999 Nov; 22():29-47. PubMed ID: 10202531 [Abstract] [Full Text] [Related]
10. Structure and function of parallel pathways in the primate early visual system. Callaway EM. J Physiol; 2005 Jul 01; 566(Pt 1):13-9. PubMed ID: 15905213 [Abstract] [Full Text] [Related]
12. Patterns of correlated spontaneous bursting activity in the developing mammalian retina. Wong RO. Semin Cell Dev Biol; 1997 Feb 01; 8(1):5-12. PubMed ID: 15001099 [Abstract] [Full Text] [Related]
13. Recovery from optic neuritis: an ROI-based analysis of LGN and visual cortical areas. Korsholm K, Madsen KH, Frederiksen JL, Skimminge A, Lund TE. Brain; 2007 May 01; 130(Pt 5):1244-53. PubMed ID: 17472983 [Abstract] [Full Text] [Related]
14. Spontaneous patterned retinal activity and the refinement of retinal projections. Torborg CL, Feller MB. Prog Neurobiol; 2005 Jul 01; 76(4):213-35. PubMed ID: 16280194 [Abstract] [Full Text] [Related]
15. [Neuronal development of the fetal and infantile period: 1. Visual cortex in the normal and chromosomal aberrations (author's transl)]. Takashima S. No To Shinkei; 1980 Oct 01; 32(10):1007-13. PubMed ID: 6449207 [No Abstract] [Full Text] [Related]
16. Mechanisms of retinotopic map development: Ephs, ephrins, and spontaneous correlated retinal activity. O'Leary DD, McLaughlin T. Prog Brain Res; 2005 Oct 01; 147():43-65. PubMed ID: 15581697 [Abstract] [Full Text] [Related]
17. Pre- and post-critical period induced reduction of Cat-301 immunoreactivity in the lateral geniculate nucleus and visual cortex of cats Y-blocked as adults or made strabismic as kittens. Yin ZQ, Crewther SG, Wang C, Crewther DP. Mol Vis; 2006 Aug 07; 12():858-66. PubMed ID: 16917486 [Abstract] [Full Text] [Related]
18. The visual system in subterranean African mole-rats (Rodentia, Bathyergidae): retina, subcortical visual nuclei and primary visual cortex. Nemec P, Cveková P, Benada O, Wielkopolska E, Olkowicz S, Turlejski K, Burda H, Bennett NC, Peichl L. Brain Res Bull; 2008 Mar 18; 75(2-4):356-64. PubMed ID: 18331898 [Abstract] [Full Text] [Related]
19. Rapid eye movement sleep deprivation revives a form of developmentally regulated synaptic plasticity in the visual cortex of post-critical period rats. Shaffery JP, Lopez J, Bissette G, Roffwarg HP. Neurosci Lett; 2006 Jan 02; 391(3):96-101. PubMed ID: 16154270 [Abstract] [Full Text] [Related]
20. Fos-tau-LacZ mice expose light-activated pathways in the visual system. Greferath U, Nag N, Zele AJ, Bui BV, Wilson Y, Vingrys AJ, Murphy M. Neuroimage; 2004 Nov 02; 23(3):1027-38. PubMed ID: 15528103 [Abstract] [Full Text] [Related] Page: [Next] [New Search]