These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


220 related items for PubMed ID: 15294054

  • 1. Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin-, amino acid- and exercise-induced signalling.
    Bolster DR, Jefferson LS, Kimball SR.
    Proc Nutr Soc; 2004 May; 63(2):351-6. PubMed ID: 15294054
    [Abstract] [Full Text] [Related]

  • 2. Invited Review: Role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exercise.
    Kimball SR, Farrell PA, Jefferson LS.
    J Appl Physiol (1985); 2002 Sep; 93(3):1168-80. PubMed ID: 12183515
    [Abstract] [Full Text] [Related]

  • 3. Mechanotransduction and the regulation of protein synthesis in skeletal muscle.
    Hornberger TA, Esser KA.
    Proc Nutr Soc; 2004 May; 63(2):331-5. PubMed ID: 15294051
    [Abstract] [Full Text] [Related]

  • 4. Resistance exercise, muscle loading/unloading and the control of muscle mass.
    Baar K, Nader G, Bodine S.
    Essays Biochem; 2006 May; 42():61-74. PubMed ID: 17144880
    [Abstract] [Full Text] [Related]

  • 5. Signal transduction pathways that regulate muscle growth.
    Wackerhage H, Ratkevicius A.
    Essays Biochem; 2008 May; 44():99-108. PubMed ID: 18384285
    [Abstract] [Full Text] [Related]

  • 6. mTOR signaling and the molecular adaptation to resistance exercise.
    Bodine SC.
    Med Sci Sports Exerc; 2006 Nov; 38(11):1950-7. PubMed ID: 17095929
    [Abstract] [Full Text] [Related]

  • 7. Exercise- and nutrient-controlled mechanisms involved in maintenance of the musculoskeletal mass.
    Rennie MJ.
    Biochem Soc Trans; 2007 Nov; 35(Pt 5):1302-5. PubMed ID: 17956336
    [Abstract] [Full Text] [Related]

  • 8. Changes in signalling pathways regulating protein synthesis in human muscle in the recovery period after endurance exercise.
    Mascher H, Andersson H, Nilsson PA, Ekblom B, Blomstrand E.
    Acta Physiol (Oxf); 2007 Sep; 191(1):67-75. PubMed ID: 17488244
    [Abstract] [Full Text] [Related]

  • 9. Insulin-like growth factor-1 (IGF-1) and leucine activate pig myogenic satellite cells through mammalian target of rapamycin (mTOR) pathway.
    Han B, Tong J, Zhu MJ, Ma C, Du M.
    Mol Reprod Dev; 2008 May; 75(5):810-7. PubMed ID: 18033679
    [Abstract] [Full Text] [Related]

  • 10. Insulin facilitation of muscle protein synthesis following resistance exercise in hindlimb-suspended rats is independent of a rapamycin-sensitive pathway.
    Fluckey JD, Dupont-Versteegden EE, Knox M, Gaddy D, Tesch PA, Peterson CA.
    Am J Physiol Endocrinol Metab; 2004 Dec; 287(6):E1070-5. PubMed ID: 15304378
    [Abstract] [Full Text] [Related]

  • 11. Exercise training-induced improvements in insulin action.
    Hawley JA, Lessard SJ.
    Acta Physiol (Oxf); 2008 Jan; 192(1):127-35. PubMed ID: 18171435
    [Abstract] [Full Text] [Related]

  • 12. The effects of amino acids on glucose metabolism of isolated rat skeletal muscle are independent of insulin and the mTOR/S6K pathway.
    Stadlbauer K, Brunmair B, Szöcs Z, Krebs M, Luger A, Fürnsinn C.
    Am J Physiol Endocrinol Metab; 2009 Sep; 297(3):E785-92. PubMed ID: 19622787
    [Abstract] [Full Text] [Related]

  • 13. Cell hydration and mTOR-dependent signalling.
    Schliess F, Richter L, vom Dahl S, Häussinger D.
    Acta Physiol (Oxf); 2006 Sep; 187(1-2):223-9. PubMed ID: 16734759
    [Abstract] [Full Text] [Related]

  • 14. IGF-1-stimulated protein synthesis in oligodendrocyte progenitors requires PI3K/mTOR/Akt and MEK/ERK pathways.
    Bibollet-Bahena O, Almazan G.
    J Neurochem; 2009 Jun; 109(5):1440-51. PubMed ID: 19453943
    [Abstract] [Full Text] [Related]

  • 15. Effect of exercise and insulin on SREBP-1c expression in human skeletal muscle: potential roles for the ERK1/2 and Akt signalling pathways.
    Boonsong T, Norton L, Chokkalingam K, Jewell K, Macdonald I, Bennett A, Tsintzas K.
    Biochem Soc Trans; 2007 Nov; 35(Pt 5):1310-1. PubMed ID: 17956338
    [Abstract] [Full Text] [Related]

  • 16. The role of nutrition in stimulating muscle protein accretion at the molecular level.
    Kimball SR.
    Biochem Soc Trans; 2007 Nov; 35(Pt 5):1298-301. PubMed ID: 17956335
    [Abstract] [Full Text] [Related]

  • 17. mVps34 is activated by an acute bout of resistance exercise.
    Mackenzie MG, Hamilton DL, Murray JT, Baar K.
    Biochem Soc Trans; 2007 Nov; 35(Pt 5):1314-6. PubMed ID: 17956340
    [Abstract] [Full Text] [Related]

  • 18. The mammalian target of rapamycin-signaling pathway in regulating metabolism and growth.
    Yang X, Yang C, Farberman A, Rideout TC, de Lange CF, France J, Fan MZ.
    J Anim Sci; 2008 Apr; 86(14 Suppl):E36-50. PubMed ID: 17998426
    [Abstract] [Full Text] [Related]

  • 19. mTOR pathway inhibition attenuates skeletal muscle growth induced by stretching.
    Aoki MS, Miyabara EH, Soares AG, Saito ET, Moriscot AS.
    Cell Tissue Res; 2006 Apr; 324(1):149-56. PubMed ID: 16408196
    [Abstract] [Full Text] [Related]

  • 20. Time course changes in signaling pathways and protein synthesis in C2C12 myotubes following AMPK activation by AICAR.
    Williamson DL, Bolster DR, Kimball SR, Jefferson LS.
    Am J Physiol Endocrinol Metab; 2006 Jul; 291(1):E80-9. PubMed ID: 16760336
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.