These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
121 related items for PubMed ID: 1530620
21. Substrate and inhibitor studies of thermolysin-like neutral metalloendopeptidase from kidney membrane fractions. Comparison with bacterial thermolysin. Pozsgay M, Michaud C, Liebman M, Orlowski M. Biochemistry; 1986 Mar 25; 25(6):1292-9. PubMed ID: 3516218 [Abstract] [Full Text] [Related]
22. Comparison of human and porcine tissue kallikrein substrate specificities. Del Nery E, Chagas JR, Juliano MA, Juliano L, Prado ES. Immunopharmacology; 1999 Dec 25; 45(1-3):151-7. PubMed ID: 10615005 [Abstract] [Full Text] [Related]
23. Design and synthesis of fluorogenic trypsin peptide substrates based on resonance energy transfer. Grahn S, Ullmann D, Jakubke H. Anal Biochem; 1998 Dec 15; 265(2):225-31. PubMed ID: 9882396 [Abstract] [Full Text] [Related]
24. Hydrolysis of synthetic chromogenic substrates by HIV-1 and HIV-2 proteinases. Phylip LH, Richards AD, Kay J, Kovalinka J, Strop P, Blaha I, Velek J, Kostka V, Ritchie AJ, Broadhurst AV. Biochem Biophys Res Commun; 1990 Aug 31; 171(1):439-44. PubMed ID: 2203349 [Abstract] [Full Text] [Related]
25. Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase omega. Three-dimensional structure of papaya proteinase omega deduced by knowledge-based modelling and active-centre characteristics determined by two-hydronic-state reactivity probe kinetics and kinetics of catalysis. Topham CM, Salih E, Frazao C, Kowlessur D, Overington JP, Thomas M, Brocklehurst SM, Patel M, Thomas EW, Brocklehurst K. Biochem J; 1991 Nov 15; 280 ( Pt 1)(Pt 1):79-92. PubMed ID: 1741760 [Abstract] [Full Text] [Related]
26. Synthesis of a fluorogenic interleukin-1 beta converting enzyme substrate based on resonance energy transfer. Pennington MW, Thornberry NA. Pept Res; 1994 Nov 15; 7(2):72-6. PubMed ID: 8012123 [Abstract] [Full Text] [Related]
27. Characterization by rapid-kinetic and equilibrium methods of the interaction between N-terminally truncated forms of chicken cystatin and the cysteine proteinases papain and actinidin. Lindahl P, Nycander M, Ylinenjärvi K, Pol E, Björk I. Biochem J; 1992 Aug 15; 286 ( Pt 1)(Pt 1):165-71. PubMed ID: 1520264 [Abstract] [Full Text] [Related]
28. Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer. Matayoshi ED, Wang GT, Krafft GA, Erickson J. Science; 1990 Feb 23; 247(4945):954-8. PubMed ID: 2106161 [Abstract] [Full Text] [Related]
29. Profiling of calpain activity with a series of FRET-based substrates. Kelly JC, Cuerrier D, Graham LA, Campbell RL, Davies PL. Biochim Biophys Acta; 2009 Oct 23; 1794(10):1505-9. PubMed ID: 19555780 [Abstract] [Full Text] [Related]
30. Variation in the P2-S2 stereochemical selectivity towards the enantiomeric N-acetylphenylalanylglycine 4-nitroanilides among the cysteine proteinases papain, ficin and actinidin. Patel M, Kayani IS, Mellor GW, Sreedharan S, Templeton W, Thomas EW, Thomas M, Brocklehurst K. Biochem J; 1992 Jan 15; 281 ( Pt 2)(Pt 2):553-9. PubMed ID: 1736903 [Abstract] [Full Text] [Related]
31. Exploration of subsite binding specificity of human cathepsin D through kinetics and rule-based molecular modeling. Scarborough PE, Guruprasad K, Topham C, Richo GR, Conner GE, Blundell TL, Dunn BM. Protein Sci; 1993 Feb 15; 2(2):264-76. PubMed ID: 8443603 [Abstract] [Full Text] [Related]
32. Kinetic characterization of lysine-specific metalloendopeptidases from Grifola frondosa and Pleurotus ostreatus fruiting bodies. Nonaka T, Hashimoto Y, Takio K. J Biochem; 1998 Jul 15; 124(1):157-62. PubMed ID: 9644258 [Abstract] [Full Text] [Related]
33. Kinetic investigation of the alpha-chymotrypsin-catalyzed hydrolysis of peptide substrates. The relationship between the peptide structure C-terminal to the cleaved bond and reactivity. Bizzozero SA, Baumann WK, Dutler H. Eur J Biochem; 1982 Feb 15; 122(2):251-8. PubMed ID: 7060575 [Abstract] [Full Text] [Related]
34. Nucleophile specificity in papain-catalyzed acyl transfer reactions. Schuster M, Jakubke HD, Kasche V. Biomed Biochim Acta; 1991 Feb 15; 50(10-11):S122-6. PubMed ID: 1820032 [Abstract] [Full Text] [Related]
35. Cooperativity of papain-substrate interaction energies in the S2 to S2' subsites. Berti PJ, Faerman CH, Storer AC. Biochemistry; 1991 Feb 05; 30(5):1394-402. PubMed ID: 1991120 [Abstract] [Full Text] [Related]
36. Probing substrate backbone function in prolyl oligopeptidase catalysis--large positional effects of peptide bond monothioxylation. Schutkowski M, Jakob M, Landgraf G, Born I, Neubert K, Fischer G. Eur J Biochem; 1997 Apr 15; 245(2):381-5. PubMed ID: 9151967 [Abstract] [Full Text] [Related]
39. Synthetic substrates for human factor VIIa and factor VIIa-tissue factor. Butenas S, Ribarik N, Mann KG. Biochemistry; 1993 Jul 06; 32(26):6531-8. PubMed ID: 8329383 [Abstract] [Full Text] [Related]
40. New substrates of papain, based on the conserved sequence of natural inhibitors of the cystatin family. Serveau C, Juliano L, Bernard P, Moreau T, Mayer R, Gauthier F. Biochimie; 1994 Jul 06; 76(2):153-8. PubMed ID: 8043651 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]