These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


143 related items for PubMed ID: 15312736

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Enhanced solubilization and removal of naphthalene and phenanthrene by cyclodextrins from two contaminated soils.
    Badr T, Hanna K, de Brauer C.
    J Hazard Mater; 2004 Aug 30; 112(3):215-23. PubMed ID: 15302442
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Degradation of pentachlorophenol in cyclodextrin extraction effluent using a photocatalytic process.
    Hanna K, de Brauer Ch, Germain P, Chovelon JM, Ferronato C.
    Sci Total Environ; 2004 Oct 01; 332(1-3):51-60. PubMed ID: 15336890
    [Abstract] [Full Text] [Related]

  • 5. Enhanced electrokinetic dissolution of naphthalene and 2,4-DNT from contaminated soils.
    Jiradecha C, Urgun-Demirtas M, Pagilla K.
    J Hazard Mater; 2006 Aug 10; 136(1):61-7. PubMed ID: 16359784
    [Abstract] [Full Text] [Related]

  • 6. Solubility enhancement of seven metal contaminants using carboxymethyl-beta-cyclodextrin (CMCD).
    Skold ME, Thyne GD, Drexler JW, McCray JE.
    J Contam Hydrol; 2009 Jul 21; 107(3-4):108-13. PubMed ID: 19487046
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Coupling enhanced water solubilization with cyclodextrin to indirect electrochemical treatment for pentachlorophenol contaminated soil remediation.
    Hanna K, Chiron S, Oturan MA.
    Water Res; 2005 Jul 21; 39(12):2763-73. PubMed ID: 15975622
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Time-dependent sorption of norflurazon in four different soils: use of beta-cyclodextrin solutions for remediation of pesticide-contaminated soils.
    Villaverde J.
    J Hazard Mater; 2007 Apr 02; 142(1-2):184-90. PubMed ID: 16973265
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Chemical attenuation of arsenic by soils across two abandoned mine sites in Korea.
    Nam SM, Kim M, Hyun S, Lee SH.
    Chemosphere; 2010 Nov 02; 81(9):1124-30. PubMed ID: 20869095
    [Abstract] [Full Text] [Related]

  • 13. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content.
    Dobran S, Zagury GJ.
    Sci Total Environ; 2006 Jul 01; 364(1-3):239-50. PubMed ID: 16055167
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils.
    Anawar HM, Garcia-Sanchez A, Santa Regina I.
    Chemosphere; 2008 Feb 01; 70(8):1459-67. PubMed ID: 17936872
    [Abstract] [Full Text] [Related]

  • 17. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland.
    Krysiak A, Karczewska A.
    Sci Total Environ; 2007 Jul 01; 379(2-3):190-200. PubMed ID: 17187844
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments.
    Bauer M, Blodau C.
    Sci Total Environ; 2006 Feb 01; 354(2-3):179-90. PubMed ID: 16398994
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.