These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


185 related items for PubMed ID: 15312988

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Tonic inhibitory action by nitric oxide on spontaneous mechanical activity in rat proximal colon: involvement of cyclic GMP and apamin-sensitive K+ channels.
    Mulè F, D'Angelo S, Serio R.
    Br J Pharmacol; 1999 May; 127(2):514-20. PubMed ID: 10385253
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Upregulation of phosphodiesterase 1A1 expression is associated with the development of nitrate tolerance.
    Kim D, Rybalkin SD, Pi X, Wang Y, Zhang C, Munzel T, Beavo JA, Berk BC, Yan C.
    Circulation; 2001 Nov 06; 104(19):2338-43. PubMed ID: 11696475
    [Abstract] [Full Text] [Related]

  • 26. cGMP stimulates renin secretion in vivo by inhibiting phosphodiesterase-3.
    Beierwaltes WH.
    Am J Physiol Renal Physiol; 2006 Jun 06; 290(6):F1376-81. PubMed ID: 16449359
    [Abstract] [Full Text] [Related]

  • 27. C-type natriuretic peptide regulation of guanosine-3',5'-cyclic monophosphate production in human endothelial cells.
    Rautureau Y, Gowers I, Wheeler-Jones CP, Baxter GF.
    Auton Autacoid Pharmacol; 2010 Jul 06; 30(3):185-92. PubMed ID: 20085572
    [Abstract] [Full Text] [Related]

  • 28. Regulation of nitric oxide-sensitive guanylyl cyclase.
    Friebe A, Koesling D.
    Circ Res; 2003 Jul 25; 93(2):96-105. PubMed ID: 12881475
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Spontaneous and receptor-controlled soluble guanylyl cyclase activity in anterior pituitary cells.
    Kostic TS, Andric SA, Stojilkovic SS.
    Mol Endocrinol; 2001 Jun 25; 15(6):1010-22. PubMed ID: 11376118
    [Abstract] [Full Text] [Related]

  • 31. Functional identification of phosphodiesterase activity in human trabecular meshwork cells.
    Zhou L, Thompson WJ, Potter DE.
    J Ocul Pharmacol Ther; 2000 Aug 25; 16(4):317-22. PubMed ID: 10977127
    [Abstract] [Full Text] [Related]

  • 32. Evidence that additional mechanisms to cyclic GMP mediate the decrease in intracellular calcium and relaxation of rabbit aortic smooth muscle to nitric oxide.
    Weisbrod RM, Griswold MC, Yaghoubi M, Komalavilas P, Lincoln TM, Cohen RA.
    Br J Pharmacol; 1998 Dec 25; 125(8):1695-707. PubMed ID: 9886761
    [Abstract] [Full Text] [Related]

  • 33. Cyclic GMP potentiation by WIN 58237, a novel cyclic nucleotide phosphodiesterase inhibitor.
    Silver PJ, Dundore RL, Bode DC, de Garavilla L, Buchholz RA, van Aller G, Hamel LT, Bacon E, Singh B, Lesher GY.
    J Pharmacol Exp Ther; 1994 Dec 25; 271(3):1143-9. PubMed ID: 7996419
    [Abstract] [Full Text] [Related]

  • 34. Inhibition of phosphodiesterase type 5 by the activator of nitric oxide-sensitive guanylyl cyclase BAY 41-2272.
    Mullershausen F, Russwurm M, Friebe A, Koesling D.
    Circulation; 2004 Apr 13; 109(14):1711-3. PubMed ID: 15066950
    [Abstract] [Full Text] [Related]

  • 35. Postnatal maturation of phosphodiesterase 5 (PDE5) in piglet pulmonary arteries: activity, expression, effects of PDE5 inhibitors, and role of the nitric oxide/cyclic GMP pathway.
    Moreno L, Losada B, Cogolludo Al, Lodi F, Lugnier C, Villamor E, Moro M, Tamargo J, Pérez-Vizcaíno F.
    Pediatr Res; 2004 Oct 13; 56(4):563-70. PubMed ID: 15295092
    [Abstract] [Full Text] [Related]

  • 36. Species differences in the localization of cGMP-producing and NO-responsive elements in the mouse and rat hippocampus using cGMP immunocytochemistry.
    van Staveren WC, Steinbusch HW, Markerink-van Ittersum M, Behrends S, de Vente J.
    Eur J Neurosci; 2004 Apr 13; 19(8):2155-68. PubMed ID: 15090042
    [Abstract] [Full Text] [Related]

  • 37. Phosphodiesterase type 2 and the homeostasis of cyclic GMP in living thalamic neurons.
    Hepp R, Tricoire L, Hu E, Gervasi N, Paupardin-Tritsch D, Lambolez B, Vincent P.
    J Neurochem; 2007 Sep 13; 102(6):1875-1886. PubMed ID: 17561940
    [Abstract] [Full Text] [Related]

  • 38. Nitric oxide-evoked cGMP production in Purkinje cells in rat cerebellum: an immunocytochemical and pharmacological study.
    Marcoli M, Maura G, Cervetto C, Giacomini C, Oliveri D, Candiani S, Pestarino M.
    Neurochem Int; 2006 Dec 13; 49(7):683-90. PubMed ID: 16904241
    [Abstract] [Full Text] [Related]

  • 39. Expression and activity of cGMP-dependent phosphodiesterases is up-regulated by lipopolysaccharide (LPS) in rat peritoneal macrophages.
    Witwicka H, Kobiałka M, Siednienko J, Mitkiewicz M, Gorczyca WA.
    Biochim Biophys Acta; 2007 Feb 13; 1773(2):209-18. PubMed ID: 17141339
    [Abstract] [Full Text] [Related]

  • 40. Nucleotidyl cyclase activity of soluble guanylyl cyclase in intact cells.
    Bähre H, Danker KY, Stasch JP, Kaever V, Seifert R.
    Biochem Biophys Res Commun; 2014 Jan 24; 443(4):1195-9. PubMed ID: 24380860
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.