These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Racemized D-aspartate in Alzheimer neurofibrillary tangles. Fisher GH, Payan IL, Chou SJ, Man EH, Cerwinski S, Martin T, Emory C, Frey WH. Brain Res Bull; 1992 Jan; 28(1):127-31. PubMed ID: 1540839 [Abstract] [Full Text] [Related]
3. Isoaspartate formation and neurodegeneration in Alzheimer's disease. Shimizu T, Watanabe A, Ogawara M, Mori H, Shirasawa T. Arch Biochem Biophys; 2000 Sep 15; 381(2):225-34. PubMed ID: 11032409 [Abstract] [Full Text] [Related]
4. Measurement of altered aspartyl residues in the scrapie associated form of prion protein. Weber DJ, McFadden PN, Caughey B. Biochem Biophys Res Commun; 1998 May 29; 246(3):606-8. PubMed ID: 9618258 [Abstract] [Full Text] [Related]
5. Structural elements affecting the recognition of L-isoaspartyl residues by the L-isoaspartyl/D-aspartyl protein methyltransferase. Implications for the repair hypothesis. Lowenson JD, Clarke S. J Biol Chem; 1991 Oct 15; 266(29):19396-406. PubMed ID: 1833402 [Abstract] [Full Text] [Related]
6. Mammalian brain and erythrocyte carboxyl methyltransferases are similar enzymes that recognize both D-aspartyl and L-isoaspartyl residues in structurally altered protein substrates. O'Connor CM, Aswad DW, Clarke S. Proc Natl Acad Sci U S A; 1984 Dec 15; 81(24):7757-61. PubMed ID: 6595658 [Abstract] [Full Text] [Related]
7. A protein methyltransferase specific for altered aspartyl residues is important in Escherichia coli stationary-phase survival and heat-shock resistance. Li C, Clarke S. Proc Natl Acad Sci U S A; 1992 Oct 15; 89(20):9885-9. PubMed ID: 1409717 [Abstract] [Full Text] [Related]
8. Detection of D-aspartate in tau proteins associated with Alzheimer paired helical filaments. Kenessey A, Yen SH, Liu WK, Yang XR, Dunlop DS. Brain Res; 1995 Mar 27; 675(1-2):183-9. PubMed ID: 7796127 [Abstract] [Full Text] [Related]
9. Isoaspartate formation at position 23 of amyloid beta peptide enhanced fibril formation and deposited onto senile plaques and vascular amyloids in Alzheimer's disease. Shimizu T, Fukuda H, Murayama S, Izumiyama N, Shirasawa T. J Neurosci Res; 2002 Nov 01; 70(3):451-61. PubMed ID: 12391606 [Abstract] [Full Text] [Related]
10. Recognition of D-aspartyl residues in polypeptides by the erythrocyte L-isoaspartyl/D-aspartyl protein methyltransferase. Implications for the repair hypothesis. Lowenson JD, Clarke S. J Biol Chem; 1992 Mar 25; 267(9):5985-95. PubMed ID: 1556110 [Abstract] [Full Text] [Related]
11. D-aspartate content of erythrocyte membrane proteins is decreased in uremia: implications for the repair of damaged proteins. Perna AF, D'Aniello A, Lowenson JD, Clarke S, De Santo NG, Ingrosso D. J Am Soc Nephrol; 1997 Jan 25; 8(1):95-104. PubMed ID: 9013453 [Abstract] [Full Text] [Related]
12. Prediction of binding modes between protein L-isoaspartyl (D-aspartyl) O-methyltransferase and peptide substrates including isomerized aspartic acid residues using in silico analytic methods for the substrate screening. Oda A, Noji I, Fukuyoshi S, Takahashi O. J Pharm Biomed Anal; 2015 Dec 10; 116():116-22. PubMed ID: 25758062 [Abstract] [Full Text] [Related]
13. Synthetic peptide substrates for the erythrocyte protein carboxyl methyltransferase. Detection of a new site of methylation at isomerized L-aspartyl residues. Murray ED, Clarke S. J Biol Chem; 1984 Sep 10; 259(17):10722-32. PubMed ID: 6469980 [Abstract] [Full Text] [Related]
14. In vitro aging of calmodulin generates isoaspartate at multiple Asn-Gly and Asp-Gly sites in calcium-binding domains II, III, and IV. Potter SM, Henzel WJ, Aswad DW. Protein Sci; 1993 Oct 10; 2(10):1648-63. PubMed ID: 8251940 [Abstract] [Full Text] [Related]
15. Increased methyl esterification of altered aspartyl residues in erythrocyte membrane proteins in response to oxidative stress. Ingrosso D, D'angelo S, di Carlo E, Perna AF, Zappia V, Galletti P. Eur J Biochem; 2000 Jul 10; 267(14):4397-405. PubMed ID: 10880963 [Abstract] [Full Text] [Related]
16. Methylation at specific altered aspartyl and asparaginyl residues in glucagon by the erythrocyte protein carboxyl methyltransferase. Ota IM, Ding L, Clarke S. J Biol Chem; 1987 Jun 25; 262(18):8522-31. PubMed ID: 3597386 [Abstract] [Full Text] [Related]
17. Deficiency of a protein-repair enzyme results in the accumulation of altered proteins, retardation of growth, and fatal seizures in mice. Kim E, Lowenson JD, MacLaren DC, Clarke S, Young SG. Proc Natl Acad Sci U S A; 1997 Jun 10; 94(12):6132-7. PubMed ID: 9177182 [Abstract] [Full Text] [Related]
18. Limited accumulation of damaged proteins in l-isoaspartyl (D-aspartyl) O-methyltransferase-deficient mice. Lowenson JD, Kim E, Young SG, Clarke S. J Biol Chem; 2001 Jun 08; 276(23):20695-702. PubMed ID: 11279164 [Abstract] [Full Text] [Related]
19. Human erythrocyte D-aspartyl/L-isoaspartyl methyltransferases: enzymes that recognize age-damaged proteins. Ingrosso D, Clarke S. Adv Exp Med Biol; 1991 Jun 08; 307():263-76. PubMed ID: 1805590 [No Abstract] [Full Text] [Related]
20. Enzymatic methylation of L-isoaspartyl residues derived from aspartyl residues in affinity-purified calmodulin. The role of conformational flexibility in spontaneous isoaspartyl formation. Ota IM, Clarke S. J Biol Chem; 1989 Jan 05; 264(1):54-60. PubMed ID: 2642479 [Abstract] [Full Text] [Related] Page: [Next] [New Search]