These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


148 related items for PubMed ID: 15317793

  • 1. The htx and ptx operons of Pseudomonas stutzeri WM88 are new members of the pho regulon.
    White AK, Metcalf WW.
    J Bacteriol; 2004 Sep; 186(17):5876-82. PubMed ID: 15317793
    [Abstract] [Full Text] [Related]

  • 2. Two C-P lyase operons in Pseudomonas stutzeri and their roles in the oxidation of phosphonates, phosphite, and hypophosphite.
    White AK, Metcalf WW.
    J Bacteriol; 2004 Jul; 186(14):4730-9. PubMed ID: 15231805
    [Abstract] [Full Text] [Related]

  • 3. Molecular genetic analysis of phosphite and hypophosphite oxidation by Pseudomonas stutzeri WM88.
    Metcalf WW, Wolfe RS.
    J Bacteriol; 1998 Nov; 180(21):5547-58. PubMed ID: 9791102
    [Abstract] [Full Text] [Related]

  • 4. Genetic diversity and horizontal transfer of genes involved in oxidation of reduced phosphorus compounds by Alcaligenes faecalis WM2072.
    Wilson MM, Metcalf WW.
    Appl Environ Microbiol; 2005 Jan; 71(1):290-6. PubMed ID: 15640200
    [Abstract] [Full Text] [Related]

  • 5. Regulation of tetralin biodegradation and identification of genes essential for expression of thn operons.
    Martínez-Pérez O, Moreno-Ruiz E, Floriano B, Santero E.
    J Bacteriol; 2004 Sep; 186(18):6101-9. PubMed ID: 15342579
    [Abstract] [Full Text] [Related]

  • 6. The molecular basis of phosphite and hypophosphite recognition by ABC-transporters.
    Bisson C, Adams NBP, Stevenson B, Brindley AA, Polyviou D, Bibby TS, Baker PJ, Hunter CN, Hitchcock A.
    Nat Commun; 2017 Nov 23; 8(1):1746. PubMed ID: 29170493
    [Abstract] [Full Text] [Related]

  • 7. Comparative genomic, proteomic and exoproteomic analyses of three Pseudomonas strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria.
    Lidbury ID, Murphy AR, Scanlan DJ, Bending GD, Jones AM, Moore JD, Goodall A, Hammond JP, Wellington EM.
    Environ Microbiol; 2016 Oct 23; 18(10):3535-3549. PubMed ID: 27233093
    [Abstract] [Full Text] [Related]

  • 8. Isolation and biochemical characterization of hypophosphite/2-oxoglutarate dioxygenase. A novel phosphorus-oxidizing enzyme from Psuedomonas stutzeri WM88.
    White AK, Metcalf WW.
    J Biol Chem; 2002 Oct 11; 277(41):38262-71. PubMed ID: 12161433
    [Abstract] [Full Text] [Related]

  • 9. Conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1.
    Monds RD, Newell PD, Schwartzman JA, O'Toole GA.
    Appl Environ Microbiol; 2006 Mar 11; 72(3):1910-24. PubMed ID: 16517638
    [Abstract] [Full Text] [Related]

  • 10. Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis.
    Lizewski SE, Schurr JR, Jackson DW, Frisk A, Carterson AJ, Schurr MJ.
    J Bacteriol; 2004 Sep 11; 186(17):5672-84. PubMed ID: 15317771
    [Abstract] [Full Text] [Related]

  • 11. Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD.
    Puri-Taneja A, Schau M, Chen Y, Hulett FM.
    J Bacteriol; 2007 May 11; 189(9):3348-58. PubMed ID: 17322317
    [Abstract] [Full Text] [Related]

  • 12. Genome-wide analysis of phosphorylated PhoP binding to chromosomal DNA reveals several novel features of the PhoPR-mediated phosphate limitation response in Bacillus subtilis.
    Salzberg LI, Botella E, Hokamp K, Antelmann H, Maaß S, Becher D, Noone D, Devine KM.
    J Bacteriol; 2015 Apr 11; 197(8):1492-506. PubMed ID: 25666134
    [Abstract] [Full Text] [Related]

  • 13. Novel members of the phosphate regulon in Escherichia coli O157:H7 identified using a whole-genome shotgun approach.
    Yoshida Y, Sugiyama S, Oyamada T, Yokoyama K, Makino K.
    Gene; 2012 Jul 01; 502(1):27-35. PubMed ID: 22504029
    [Abstract] [Full Text] [Related]

  • 14. Gene regulation by phosphate in enteric bacteria.
    Wanner BL.
    J Cell Biochem; 1993 Jan 01; 51(1):47-54. PubMed ID: 8432742
    [Abstract] [Full Text] [Related]

  • 15. Phosphite disrupts the acclimation of Saccharomyces cerevisiae to phosphate starvation.
    McDonald AE, Niere JO, Plaxton WC.
    Can J Microbiol; 2001 Nov 01; 47(11):969-78. PubMed ID: 11766057
    [Abstract] [Full Text] [Related]

  • 16. Fine-tuning control of phoBR expression in Vibrio cholerae by binding of phoB to multiple pho boxes.
    Diniz MM, Goulart CL, Barbosa LC, Farache J, Lery LM, Pacheco AB, Bisch PM, von Krüger WM.
    J Bacteriol; 2011 Dec 01; 193(24):6929-38. PubMed ID: 21984792
    [Abstract] [Full Text] [Related]

  • 17. Ugp and PitA participate in the selection of PHO-constitutive mutants.
    Iglesias Neves H, Pereira TF, Yagil E, Spira B.
    J Bacteriol; 2015 Apr 01; 197(8):1378-85. PubMed ID: 25645557
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Phenazine-1-carboxylic acid is negatively regulated and pyoluteorin positively regulated by gacA in Pseudomonas sp. M18.
    Ge Y, Huang X, Wang S, Zhang X, Xu Y.
    FEMS Microbiol Lett; 2004 Aug 01; 237(1):41-7. PubMed ID: 15268936
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.