These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
624 related items for PubMed ID: 15319008
1. Increased expression of vasopressin v1a receptors after traumatic brain injury. Szmydynger-Chodobska J, Chung I, Koźniewska E, Tran B, Harrington FJ, Duncan JA, Chodobski A. J Neurotrauma; 2004 Aug; 21(8):1090-102. PubMed ID: 15319008 [Abstract] [Full Text] [Related]
2. Traumatic brain injury results in a concomitant increase in neocortical expression of vasopressin and its V1a receptor. Pascale CL, Szmydynger-Chodobska J, Sarri JE, Chodobski A. J Physiol Pharmacol; 2006 Nov; 57 Suppl 11():161-7. PubMed ID: 17244947 [Abstract] [Full Text] [Related]
3. Early neutrophilic expression of vascular endothelial growth factor after traumatic brain injury. Chodobski A, Chung I, Koźniewska E, Ivanenko T, Chang W, Harrington JF, Duncan JA, Szmydynger-Chodobska J. Neuroscience; 2003 Nov; 122(4):853-67. PubMed ID: 14643756 [Abstract] [Full Text] [Related]
4. Vasopressin V1a Receptors Regulate Cerebral Aquaporin 1 after Traumatic Brain Injury. Rauen K, Pop V, Trabold R, Badaut J, Plesnila N. J Neurotrauma; 2020 Feb 15; 37(4):665-674. PubMed ID: 31547764 [Abstract] [Full Text] [Related]
6. The role of vasopressin V1A receptors in cytotoxic brain edema formation following brain injury. Kleindienst A, Dunbar JG, Glisson R, Marmarou A. Acta Neurochir (Wien); 2013 Jan 18; 155(1):151-64. PubMed ID: 23188468 [Abstract] [Full Text] [Related]
7. Evolution of post-traumatic neurodegeneration after controlled cortical impact traumatic brain injury in mice and rats as assessed by the de Olmos silver and fluorojade staining methods. Hall ED, Bryant YD, Cho W, Sullivan PG. J Neurotrauma; 2008 Mar 18; 25(3):235-47. PubMed ID: 18352837 [Abstract] [Full Text] [Related]
8. Quantitative detection of the expression of mitochondrial cytochrome c oxidase subunits mRNA in the cerebral cortex after experimental traumatic brain injury. Dai W, Cheng HL, Huang RQ, Zhuang Z, Shi JX. Brain Res; 2009 Jan 28; 1251():287-95. PubMed ID: 19063873 [Abstract] [Full Text] [Related]
9. Diffusion-weighted imaging of edema following traumatic brain injury in rats: effects of secondary hypoxia. Van Putten HP, Bouwhuis MG, Muizelaar JP, Lyeth BG, Berman RF. J Neurotrauma; 2005 Aug 28; 22(8):857-72. PubMed ID: 16083353 [Abstract] [Full Text] [Related]
10. Arginine vasopressin V1a receptor-deficient mice have reduced brain edema and secondary brain damage following traumatic brain injury. Rauen K, Trabold R, Brem C, Terpolilli NA, Plesnila N. J Neurotrauma; 2013 Aug 15; 30(16):1442-8. PubMed ID: 23441636 [Abstract] [Full Text] [Related]
11. Midline brain injury in the immature rat induces sustained cognitive deficits, bihemispheric axonal injury and neurodegeneration. Huh JW, Widing AG, Raghupathi R. Exp Neurol; 2008 Sep 15; 213(1):84-92. PubMed ID: 18599043 [Abstract] [Full Text] [Related]
12. Progesterone differentially regulates pro- and anti-apoptotic gene expression in cerebral cortex following traumatic brain injury in rats. Yao XL, Liu J, Lee E, Ling GS, McCabe JT. J Neurotrauma; 2005 Jun 15; 22(6):656-68. PubMed ID: 15941375 [Abstract] [Full Text] [Related]
13. Relationship of calpain-mediated proteolysis to the expression of axonal and synaptic plasticity markers following traumatic brain injury in mice. Thompson SN, Gibson TR, Thompson BM, Deng Y, Hall ED. Exp Neurol; 2006 Sep 15; 201(1):253-65. PubMed ID: 16814284 [Abstract] [Full Text] [Related]
14. Vimentin and GFAP responses in astrocytes after contusion trauma to the murine brain. Ekmark-Lewén S, Lewén A, Israelsson C, Li GL, Farooque M, Olsson Y, Ebendal T, Hillered L. Restor Neurol Neurosci; 2010 Sep 15; 28(3):311-21. PubMed ID: 20479526 [Abstract] [Full Text] [Related]
15. Cell-specific upregulation of survivin after experimental traumatic brain injury in rats. Johnson EA, Svetlov SI, Pike BR, Tolentino PJ, Shaw G, Wang KK, Hayes RL, Pineda JA. J Neurotrauma; 2004 Sep 15; 21(9):1183-95. PubMed ID: 15453988 [Abstract] [Full Text] [Related]
16. Expression and cell distribution of metabotropic glutamate receptor 5 in the rat cortex following traumatic brain injury. Wang JW, Wang HD, Zhong WZ, Li N, Cong ZX. Brain Res; 2012 Jun 29; 1464():73-81. PubMed ID: 22587887 [Abstract] [Full Text] [Related]
17. Traumatic brain injury leads to increased expression of peripheral-type benzodiazepine receptors, neuronal death, and activation of astrocytes and microglia in rat thalamus. Raghavendra Rao VL, Dogan A, Bowen KK, Dempsey RJ. Exp Neurol; 2000 Jan 29; 161(1):102-14. PubMed ID: 10683277 [Abstract] [Full Text] [Related]
18. Early, transient increase in complexin I and complexin II in the cerebral cortex following traumatic brain injury is attenuated by N-acetylcysteine. Yi JH, Hoover R, McIntosh TK, Hazell AS. J Neurotrauma; 2006 Jan 29; 23(1):86-96. PubMed ID: 16430375 [Abstract] [Full Text] [Related]
19. Effect of small molecule vasopressin V1a and V2 receptor antagonists on brain edema formation and secondary brain damage following traumatic brain injury in mice. Krieg SM, Sonanini S, Plesnila N, Trabold R. J Neurotrauma; 2015 Feb 15; 32(4):221-7. PubMed ID: 25111427 [Abstract] [Full Text] [Related]
20. Effect of interleukin-1 on traumatic brain injury-induced damage to hippocampal neurons. Lu KT, Wang YW, Yang JT, Yang YL, Chen HI. J Neurotrauma; 2005 Aug 15; 22(8):885-95. PubMed ID: 16083355 [Abstract] [Full Text] [Related] Page: [Next] [New Search]