These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


399 related items for PubMed ID: 15320875

  • 1. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography.
    Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B.
    Biochem J; 2005 Jan 01; 385(Pt 1):75-83. PubMed ID: 15320875
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.
    Kratzer R, Kavanagh KL, Wilson DK, Nidetzky B.
    Biochemistry; 2004 May 04; 43(17):4944-54. PubMed ID: 15109252
    [Abstract] [Full Text] [Related]

  • 5. Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldo-keto reductases.
    Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK.
    Biochem J; 2003 Jul 15; 373(Pt 2):319-26. PubMed ID: 12733986
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Engineering Candida tenuis Xylose reductase for improved utilization of NADH: antagonistic effects of multiple side chain replacements and performance of site-directed mutants under simulated in vivo conditions.
    Petschacher B, Nidetzky B.
    Appl Environ Microbiol; 2005 Oct 15; 71(10):6390-3. PubMed ID: 16204564
    [Abstract] [Full Text] [Related]

  • 8. Fine tuning of coenzyme specificity in family 2 aldo-keto reductases revealed by crystal structures of the Lys-274-->Arg mutant of Candida tenuis xylose reductase (AKR2B5) bound to NAD+ and NADP+.
    Leitgeb S, Petschacher B, Wilson DK, Nidetzky B.
    FEBS Lett; 2005 Jan 31; 579(3):763-7. PubMed ID: 15670843
    [Abstract] [Full Text] [Related]

  • 9. NAD(P)H-dependent aldose reductase from the xylose-assimilating yeast Candida tenuis. Isolation, characterization and biochemical properties of the enzyme.
    Neuhauser W, Haltrich D, Kulbe KD, Nidetzky B.
    Biochem J; 1997 Sep 15; 326 ( Pt 3)(Pt 3):683-92. PubMed ID: 9307017
    [Abstract] [Full Text] [Related]

  • 10. Multiple forms of xylose reductase in Candida intermedia: comparison of their functional properties using quantitative structure-activity relationships, steady-state kinetic analysis, and pH studies.
    Nidetzky B, Brüggler K, Kratzer R, Mayr P.
    J Agric Food Chem; 2003 Dec 31; 51(27):7930-5. PubMed ID: 14690376
    [Abstract] [Full Text] [Related]

  • 11. The catalytic mechanism of NADH-dependent reduction of 9,10-phenanthrenequinone by Candida tenuis xylose reductase reveals plasticity in an aldo-keto reductase active site.
    Pival SL, Klimacek M, Nidetzky B.
    Biochem J; 2009 Jun 12; 421(1):43-9. PubMed ID: 19368528
    [Abstract] [Full Text] [Related]

  • 12. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S, Klimacek M, Nidetzky B.
    Biotechnol J; 2009 May 12; 4(5):684-94. PubMed ID: 19452479
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Tyr-51 is the proton donor-acceptor for NAD(H)-dependent interconversion of xylose and xylitol by Candida tenuis xylose reductase (AKR2B5).
    Pival SL, Klimacek M, Kratzer R, Nidetzky B.
    FEBS Lett; 2008 Dec 10; 582(29):4095-9. PubMed ID: 19026644
    [Abstract] [Full Text] [Related]

  • 15. Structural and functional properties of aldose xylose reductase from the D-xylose-metabolizing yeast Candida tenuis.
    Nidetzky B, Mayr P, Neuhauser W, Puchberger M.
    Chem Biol Interact; 2001 Jan 30; 130-132(1-3):583-95. PubMed ID: 11306077
    [Abstract] [Full Text] [Related]

  • 16. Identification of Candida tenuis xylose reductase as highly selective biocatalyst for the synthesis of aromatic alpha-hydroxy esters and improvement of its efficiency by protein engineering.
    Kratzer R, Nidetzky B.
    Chem Commun (Camb); 2007 Mar 14; (10):1047-9. PubMed ID: 17325801
    [Abstract] [Full Text] [Related]

  • 17. Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis.
    Lee JK, Koo BS, Kim SY.
    Appl Environ Microbiol; 2003 Oct 14; 69(10):6179-88. PubMed ID: 14532079
    [Abstract] [Full Text] [Related]

  • 18. Catalytic reaction profile for NADH-dependent reduction of aromatic aldehydes by xylose reductase from Candida tenuis.
    Mayr P, Nidetzky B.
    Biochem J; 2002 Sep 15; 366(Pt 3):889-99. PubMed ID: 12003638
    [Abstract] [Full Text] [Related]

  • 19. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S, Petschacher B, Wallner M, Longus K, Klimacek M, Nidetzky B.
    Microb Cell Fact; 2010 Mar 10; 9():16. PubMed ID: 20219100
    [Abstract] [Full Text] [Related]

  • 20. Xylose reductase from the Basidiomycete fungus Cryptococcus flavus: purification, steady-state kinetic characterization, and detailed analysis of the substrate binding pocket using structure-activity relationships.
    Mayr P, Petschacher B, Nidetzky B.
    J Biochem; 2003 Apr 10; 133(4):553-62. PubMed ID: 12761304
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.