These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


206 related items for PubMed ID: 15327982

  • 1. The ADP-glucose pyrophosphorylase from Escherichia coli comprises two tightly bound distinct domains.
    Bejar CM, Ballicora MA, Gómez-Casati DF, Iglesias AA, Preiss J.
    FEBS Lett; 2004 Aug 27; 573(1-3):99-104. PubMed ID: 15327982
    [Abstract] [Full Text] [Related]

  • 2. Site-directed mutagenesis of a regulatory site of Escherichia coli ADP-glucose pyrophosphorylase: the role of residue 336 in allosteric behavior.
    Meyer CR, Bork JA, Nadler S, Yirsa J, Preiss J.
    Arch Biochem Biophys; 1998 May 01; 353(1):152-9. PubMed ID: 9578610
    [Abstract] [Full Text] [Related]

  • 3. Functional analysis of conserved histidines in ADP-glucose pyrophosphorylase from Escherichia coli.
    Hill MA, Preiss J.
    Biochem Biophys Res Commun; 1998 Mar 17; 244(2):573-7. PubMed ID: 9514953
    [Abstract] [Full Text] [Related]

  • 4. Truncated forms of the recombinant Escherichia coli ADP-glucose pyrophosphorylase: the importance of the N-terminal region for allosteric activation and inhibition.
    Wu MX, Preiss J.
    Arch Biochem Biophys; 2001 May 15; 389(2):159-65. PubMed ID: 11339804
    [Abstract] [Full Text] [Related]

  • 5. The N-terminal region is important for the allosteric activation and inhibition of the Escherichia coli ADP-glucose pyrophosphorylase.
    Wu MX, Preiss J.
    Arch Biochem Biophys; 1998 Oct 01; 358(1):182-8. PubMed ID: 9750179
    [Abstract] [Full Text] [Related]

  • 6. Site-directed mutagenesis of lysine382, the activator-binding site, of ADP-glucose pyrophosphorylase from Anabaena PCC 7120.
    Sheng J, Charng YY, Preiss J.
    Biochemistry; 1996 Mar 05; 35(9):3115-21. PubMed ID: 8608152
    [Abstract] [Full Text] [Related]

  • 7. ADPglucose pyrophosphorylase's N-terminus: structural role in allosteric regulation.
    Bejar CM, Ballicora MA, Iglesias AA, Preiss J.
    Biochem Biophys Res Commun; 2006 Apr 28; 343(1):216-21. PubMed ID: 16530732
    [Abstract] [Full Text] [Related]

  • 8. Allosteric regulation of the higher plant ADP-glucose pyrophosphorylase is a product of synergy between the two subunits.
    Hwang SK, Salamone PR, Okita TW.
    FEBS Lett; 2005 Feb 14; 579(5):983-90. PubMed ID: 15710379
    [Abstract] [Full Text] [Related]

  • 9. Investigation of subunit function in ADP-glucose pyrophosphorylase.
    Kavakli IH, Greene TW, Salamone PR, Choi SB, Okita TW.
    Biochem Biophys Res Commun; 2001 Mar 02; 281(3):783-7. PubMed ID: 11237727
    [Abstract] [Full Text] [Related]

  • 10. Cloning, expression, and sequence of an allosteric mutant ADPglucose pyrophosphorylase from Escherichia coli B.
    Meyer CR, Ghosh P, Nadler S, Preiss J.
    Arch Biochem Biophys; 1993 Apr 02; 302(1):64-71. PubMed ID: 8385906
    [Abstract] [Full Text] [Related]

  • 11. A kinetic study of site-directed mutants of Escherichia coli ADP-glucose pyrophosphorylase: the role of residue 295 in allosteric regulation.
    Meyer CR, Yirsa J, Gott B, Preiss J.
    Arch Biochem Biophys; 1998 Apr 15; 352(2):247-54. PubMed ID: 9587413
    [Abstract] [Full Text] [Related]

  • 12. Cloning and sequencing of glycogen metabolism genes from Rhodobacter sphaeroides 2.4.1. Expression and characterization of recombinant ADP-glucose pyrophosphorylase.
    Igarashi RY, Meyer CR.
    Arch Biochem Biophys; 2000 Apr 01; 376(1):47-58. PubMed ID: 10729189
    [Abstract] [Full Text] [Related]

  • 13. The different large subunit isoforms of Arabidopsis thaliana ADP-glucose pyrophosphorylase confer distinct kinetic and regulatory properties to the heterotetrameric enzyme.
    Crevillén P, Ballicora MA, Mérida A, Preiss J, Romero JM.
    J Biol Chem; 2003 Aug 01; 278(31):28508-15. PubMed ID: 12748181
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Characterization of ADP-glucose pyrophosphorylase from Rhodobacter sphaeroides 2.4.1: evidence for the involvement of arginine in allosteric regulation.
    Meyer CR, Borra M, Igarashi R, Lin YS, Springsteel M.
    Arch Biochem Biophys; 1999 Dec 01; 372(1):179-88. PubMed ID: 10562432
    [Abstract] [Full Text] [Related]

  • 17. Structure-function analysis of glutamine synthetase adenylyltransferase (ATase, EC 2.7.7.49) of Escherichia coli.
    Jiang P, Pioszak AA, Ninfa AJ.
    Biochemistry; 2007 Apr 03; 46(13):4117-32. PubMed ID: 17355124
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Kinetic and crystallographic analyses support a sequential-ordered bi bi catalytic mechanism for Escherichia coli glucose-1-phosphate thymidylyltransferase.
    Zuccotti S, Zanardi D, Rosano C, Sturla L, Tonetti M, Bolognesi M.
    J Mol Biol; 2001 Nov 02; 313(4):831-43. PubMed ID: 11697907
    [Abstract] [Full Text] [Related]

  • 20. Subunit interactions specify the allosteric regulatory properties of the potato tuber ADP-glucose pyrophosphorylase.
    Kim D, Hwang SK, Okita TW.
    Biochem Biophys Res Commun; 2007 Oct 19; 362(2):301-6. PubMed ID: 17707339
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.