These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
221 related items for PubMed ID: 15328602
1. The zinc-dependent redox switch domain of the chaperone Hsp33 has a novel fold. Won HS, Low LY, Guzman RD, Martinez-Yamout M, Jakob U, Dyson HJ. J Mol Biol; 2004 Aug 20; 341(4):893-9. PubMed ID: 15328602 [Abstract] [Full Text] [Related]
2. Activation of the redox-regulated chaperone Hsp33 by domain unfolding. Graf PC, Martinez-Yamout M, VanHaerents S, Lilie H, Dyson HJ, Jakob U. J Biol Chem; 2004 May 07; 279(19):20529-38. PubMed ID: 15023991 [Abstract] [Full Text] [Related]
3. The crystal structure of the reduced, Zn2+-bound form of the B. subtilis Hsp33 chaperone and its implications for the activation mechanism. Janda I, Devedjiev Y, Derewenda U, Dauter Z, Bielnicki J, Cooper DR, Graf PC, Joachimiak A, Jakob U, Derewenda ZS. Structure; 2004 Oct 07; 12(10):1901-7. PubMed ID: 15458638 [Abstract] [Full Text] [Related]
4. Crystal structure of proteolytic fragments of the redox-sensitive Hsp33 with constitutive chaperone activity. Kim SJ, Jeong DG, Chi SW, Lee JS, Ryu SE. Nat Struct Biol; 2001 May 07; 8(5):459-66. PubMed ID: 11323724 [Abstract] [Full Text] [Related]
8. Semi-Empirical Structure Determination of Escherichia coli Hsp33 and Identification of Dynamic Regulatory Elements for the Activation Process. Lee YS, Lee J, Ryu KS, Lee Y, Jung TG, Jang JH, Sim DW, Kim EH, Seo MD, Lee KW, Won HS. J Mol Biol; 2015 Dec 04; 427(24):3850-61. PubMed ID: 26453802 [Abstract] [Full Text] [Related]
9. Unfolding of metastable linker region is at the core of Hsp33 activation as a redox-regulated chaperone. Cremers CM, Reichmann D, Hausmann J, Ilbert M, Jakob U. J Biol Chem; 2010 Apr 09; 285(15):11243-51. PubMed ID: 20139072 [Abstract] [Full Text] [Related]
11. Crystal structure of constitutively monomeric E. coli Hsp33 mutant with chaperone activity. Chi SW, Jeong DG, Woo JR, Lee HS, Park BC, Kim BY, Erikson RL, Ryu SE, Kim SJ. FEBS Lett; 2011 Feb 18; 585(4):664-70. PubMed ID: 21266175 [Abstract] [Full Text] [Related]
15. HSP33 in eukaryotes - an evolutionary tale of a chaperone adapted to photosynthetic organisms. Segal N, Shapira M. Plant J; 2015 Jun 18; 82(5):850-60. PubMed ID: 25892083 [Abstract] [Full Text] [Related]
17. The redox-switch domain of Hsp33 functions as dual stress sensor. Ilbert M, Horst J, Ahrens S, Winter J, Graf PC, Lilie H, Jakob U. Nat Struct Mol Biol; 2007 Jun 18; 14(6):556-63. PubMed ID: 17515905 [Abstract] [Full Text] [Related]
18. Unique Unfoldase/Aggregase Activity of a Molecular Chaperone Hsp33 in its Holding-Inactive State. Jo KS, Kim JH, Ryu KS, Kang JS, Wang CY, Lee YS, Seo MD, Lee YH, Won HS. J Mol Biol; 2019 Mar 29; 431(7):1468-1480. PubMed ID: 30822413 [Abstract] [Full Text] [Related]