These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


405 related items for PubMed ID: 15331101

  • 1. A theoretical study of F0-F1 interaction with application to resonant speaking and singing voice.
    Titze IR.
    J Voice; 2004 Sep; 18(3):292-8. PubMed ID: 15331101
    [Abstract] [Full Text] [Related]

  • 2. Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study.
    Titze IR, Laukkanen AM.
    Logoped Phoniatr Vocol; 2007 Sep; 32(4):147-56. PubMed ID: 17917981
    [Abstract] [Full Text] [Related]

  • 3. What can vortices tell us about vocal fold vibration and voice production.
    Khosla S, Murugappan S, Gutmark E.
    Curr Opin Otolaryngol Head Neck Surg; 2008 Jun; 16(3):183-7. PubMed ID: 18475068
    [Abstract] [Full Text] [Related]

  • 4. Nonlinear source-filter coupling in phonation: theory.
    Titze IR.
    J Acoust Soc Am; 2008 May; 123(5):2733-49. PubMed ID: 18529191
    [Abstract] [Full Text] [Related]

  • 5. Acoustic interactions of the voice source with the lower vocal tract.
    Titze IR, Story BH.
    J Acoust Soc Am; 1997 Apr; 101(4):2234-43. PubMed ID: 9104025
    [Abstract] [Full Text] [Related]

  • 6. Resonant voice: spectral and nasendoscopic analysis.
    Smith CG, Finnegan EM, Karnell MP.
    J Voice; 2005 Dec; 19(4):607-22. PubMed ID: 16301106
    [Abstract] [Full Text] [Related]

  • 7. Electroglottographic study of seven semi-occluded exercises: LaxVox, straw, lip-trill, tongue-trill, humming, hand-over-mouth, and tongue-trill combined with hand-over-mouth.
    Andrade PA, Wood G, Ratcliffe P, Epstein R, Pijper A, Svec JG.
    J Voice; 2014 Sep; 28(5):589-95. PubMed ID: 24560003
    [Abstract] [Full Text] [Related]

  • 8. Voice source characteristics in Mongolian "throat singing" studied with high-speed imaging technique, acoustic spectra, and inverse filtering.
    Lindestad PA, Södersten M, Merker B, Granqvist S.
    J Voice; 2001 Mar; 15(1):78-85. PubMed ID: 12269637
    [Abstract] [Full Text] [Related]

  • 9. Modeling the biomechanical influence of epilaryngeal stricture on the vocal folds: a low-dimensional model of vocal-ventricular fold coupling.
    Moisik SR, Esling JH.
    J Speech Lang Hear Res; 2014 Apr 01; 57(2):S687-704. PubMed ID: 24687007
    [Abstract] [Full Text] [Related]

  • 10. The influence of source-filter interaction on the voice source in a three-dimensional computational model of voice production.
    Zhang Z.
    J Acoust Soc Am; 2023 Oct 01; 154(4):2462-2475. PubMed ID: 37855666
    [Abstract] [Full Text] [Related]

  • 11. High-speed registration of phonation-related glottal area variation during artificial lengthening of the vocal tract.
    Laukkanen AM, Pulakka H, Alku P, Vilkman E, Hertegård S, Lindestad PA, Larsson H, Granqvist S.
    Logoped Phoniatr Vocol; 2007 Oct 01; 32(4):157-64. PubMed ID: 17917980
    [Abstract] [Full Text] [Related]

  • 12. Electrolaryngographically revealed aspects of the voice source in singing.
    Howard DM.
    Logoped Phoniatr Vocol; 2010 Jul 01; 35(2):81-9. PubMed ID: 20536380
    [Abstract] [Full Text] [Related]

  • 13. [The role of laryngeal kinesthetic feedback in the control of pitch in speech production].
    Duflo S, Ouaknine M, Ghio A, Giovanni A.
    Rev Laryngol Otol Rhinol (Bord); 2007 Jul 01; 128(5):297-303. PubMed ID: 20387375
    [Abstract] [Full Text] [Related]

  • 14. The influence of epilarynx area on vocal fold dynamics.
    Döllinger M, Berry DA, Montequin DW.
    Otolaryngol Head Neck Surg; 2006 Nov 01; 135(5):724-729. PubMed ID: 17071302
    [Abstract] [Full Text] [Related]

  • 15. Artificially lengthened and constricted vocal tract in vocal training methods.
    Bele IV.
    Logoped Phoniatr Vocol; 2005 Nov 01; 30(1):34-40. PubMed ID: 16040438
    [Abstract] [Full Text] [Related]

  • 16. Voice production model integrating boundary-layer analysis of glottal flow and source-filter coupling.
    Kaburagi T.
    J Acoust Soc Am; 2011 Mar 01; 129(3):1554-67. PubMed ID: 21428519
    [Abstract] [Full Text] [Related]

  • 17. Voice training and therapy with a semi-occluded vocal tract: rationale and scientific underpinnings.
    Titze IR.
    J Speech Lang Hear Res; 2006 Apr 01; 49(2):448-59. PubMed ID: 16671856
    [Abstract] [Full Text] [Related]

  • 18. [Study on the modeling of the glottic vibration: towards a nonlinear model of type stick and slip].
    Garrel R, Giovanni A, Ouaknine MA.
    Rev Laryngol Otol Rhinol (Bord); 2007 Apr 01; 128(5):279-88. PubMed ID: 20387373
    [Abstract] [Full Text] [Related]

  • 19. Measuring and modeling vocal source-tract interaction.
    Childers DG, Wong CF.
    IEEE Trans Biomed Eng; 1994 Jul 01; 41(7):663-71. PubMed ID: 7927387
    [Abstract] [Full Text] [Related]

  • 20. Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics.
    Chan RW, Titze IR.
    J Acoust Soc Am; 2006 Apr 01; 119(4):2351-62. PubMed ID: 16642848
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.