These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


118 related items for PubMed ID: 15331644

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Rhythmic fluctuations of dorsal root potentials and antidromic discharges of primary afferents during fictive locomotion in the cat.
    Dubuc R, Cabelguen JM, Rossignol S.
    J Neurophysiol; 1988 Dec; 60(6):2014-36. PubMed ID: 3236059
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Locomotor function of forelimb protractor and retractor muscles of dogs: evidence of strut-like behavior at the shoulder.
    Carrier DR, Deban SM, Fischbein T.
    J Exp Biol; 2008 Jan; 211(Pt 1):150-62. PubMed ID: 18083743
    [Abstract] [Full Text] [Related]

  • 6. [Effect of adequate stimulation of the vestibular apparatus on the locomotor activity of the forelimb muscles in the guinea pig. Rotations relative to the longitudinal axis].
    Marlinskiĭ VV, Tsintsabadze FI.
    Neirofiziologiia; 1987 Jan; 19(4):534-41. PubMed ID: 3498907
    [Abstract] [Full Text] [Related]

  • 7. Functional analysis of the shoulder girdle of cats during locomotion.
    English AW.
    J Morphol; 1978 May; 156(2):279-92. PubMed ID: 642016
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Locomotor activities in the decerebrate bird without phasic afferent input.
    Sholomenko GN, Funk GD, Steeves JD.
    Neuroscience; 1991 May; 40(1):257-66. PubMed ID: 2052153
    [Abstract] [Full Text] [Related]

  • 10. [Changes in the locomotor activity of muscles of the forelimb of the guinea pig during translation of the animal with respect to the longitudinal axis].
    Marlinskiĭ VV, Tsintsabadze FI.
    Neirofiziologiia; 1986 May; 18(3):409-12. PubMed ID: 3488512
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Contribution of the motor cortex to the structure and the timing of hindlimb locomotion in the cat: a microstimulation study.
    Bretzner F, Drew T.
    J Neurophysiol; 2005 Jul; 94(1):657-72. PubMed ID: 15788518
    [Abstract] [Full Text] [Related]

  • 14. Control of locomotor cycle durations.
    Yakovenko S, McCrea DA, Stecina K, Prochazka A.
    J Neurophysiol; 2005 Aug; 94(2):1057-65. PubMed ID: 15800075
    [Abstract] [Full Text] [Related]

  • 15. [Rearrangement of the efferent activity of a locomotor generator under electric activation of descending systems in immobilized cats].
    Degtiarenko AM, Zavadskaia TV.
    Neirofiziologiia; 1991 Aug; 23(2):151-60. PubMed ID: 1876207
    [Abstract] [Full Text] [Related]

  • 16. Activity of elbow flexor and extensor muscles during contact placing reaction in the cat.
    Czarkowska-Bauch J, Bem T.
    Acta Neurobiol Exp (Wars); 1988 Aug; 48(1):33-9. PubMed ID: 3407449
    [Abstract] [Full Text] [Related]

  • 17. Short-latency crossed inhibitory responses in extensor muscles during locomotion in the cat.
    Frigon A, Rossignol S.
    J Neurophysiol; 2008 Feb; 99(2):989-98. PubMed ID: 18094100
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Limb movements during embryonic development in the chick: evidence for a continuum in limb motor control antecedent to locomotion.
    Bradley NS, Solanki D, Zhao D.
    J Neurophysiol; 2005 Dec; 94(6):4401-11. PubMed ID: 16162824
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.