These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


254 related items for PubMed ID: 15331689

  • 1. Presynaptic plasticity at two giant auditory synapses in normal and deaf mice.
    Oleskevich S, Youssoufian M, Walmsley B.
    J Physiol; 2004 Nov 01; 560(Pt 3):709-19. PubMed ID: 15331689
    [Abstract] [Full Text] [Related]

  • 2. The role of spontaneous activity in development of the endbulb of Held synapse.
    McKay SM, Oleskevich S.
    Hear Res; 2007 Aug 01; 230(1-2):53-63. PubMed ID: 17590547
    [Abstract] [Full Text] [Related]

  • 3. Role of GluA3 AMPA Receptor Subunits in the Presynaptic and Postsynaptic Maturation of Synaptic Transmission and Plasticity of Endbulb-Bushy Cell Synapses in the Cochlear Nucleus.
    Antunes FM, Rubio ME, Kandler K.
    J Neurosci; 2020 Mar 18; 40(12):2471-2484. PubMed ID: 32051325
    [Abstract] [Full Text] [Related]

  • 4. Development of a robust central auditory synapse in congenital deafness.
    Youssoufian M, Oleskevich S, Walmsley B.
    J Neurophysiol; 2005 Nov 18; 94(5):3168-80. PubMed ID: 16000524
    [Abstract] [Full Text] [Related]

  • 5. The role of physiological afferent nerve activity during in vivo maturation of the calyx of Held synapse.
    Erazo-Fischer E, Striessnig J, Taschenberger H.
    J Neurosci; 2007 Feb 14; 27(7):1725-37. PubMed ID: 17301180
    [Abstract] [Full Text] [Related]

  • 6. Endbulb synaptic depression within the range of presynaptic spontaneous firing and its impact on the firing reliability of cochlear nucleus bushy neurons.
    Wang Y, Ren C, Manis PB.
    Hear Res; 2010 Dec 01; 270(1-2):101-9. PubMed ID: 20850512
    [Abstract] [Full Text] [Related]

  • 7. Short-term synaptic depression and recovery at the mature mammalian endbulb of Held synapse in mice.
    Wang Y, Manis PB.
    J Neurophysiol; 2008 Sep 01; 100(3):1255-64. PubMed ID: 18632895
    [Abstract] [Full Text] [Related]

  • 8. Synaptic transmission in the auditory brainstem of normal and congenitally deaf mice.
    Oleskevich S, Walmsley B.
    J Physiol; 2002 Apr 15; 540(Pt 2):447-55. PubMed ID: 11956335
    [Abstract] [Full Text] [Related]

  • 9. Acid-Sensing Ion Channels Activated by Evoked Released Protons Modulate Synaptic Transmission at the Mouse Calyx of Held Synapse.
    González-Inchauspe C, Urbano FJ, Di Guilmi MN, Uchitel OD.
    J Neurosci; 2017 Mar 08; 37(10):2589-2599. PubMed ID: 28159907
    [Abstract] [Full Text] [Related]

  • 10. Estimation of quantal parameters at the calyx of Held synapse.
    Sakaba T, Schneggenburger R, Neher E.
    Neurosci Res; 2002 Dec 08; 44(4):343-56. PubMed ID: 12445623
    [Abstract] [Full Text] [Related]

  • 11. RIM-Binding Protein 2 Organizes Ca2+ Channel Topography and Regulates Release Probability and Vesicle Replenishment at a Fast Central Synapse.
    Butola T, Alvanos T, Hintze A, Koppensteiner P, Kleindienst D, Shigemoto R, Wichmann C, Moser T.
    J Neurosci; 2021 Sep 15; 41(37):7742-7767. PubMed ID: 34353898
    [Abstract] [Full Text] [Related]

  • 12. Quantal components of the excitatory postsynaptic currents at a rat central auditory synapse.
    Sahara Y, Takahashi T.
    J Physiol; 2001 Oct 01; 536(Pt 1):189-97. PubMed ID: 11579168
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Synaptic transmission at the cochlear nucleus endbulb synapse during age-related hearing loss in mice.
    Wang Y, Manis PB.
    J Neurophysiol; 2005 Sep 01; 94(3):1814-24. PubMed ID: 15901757
    [Abstract] [Full Text] [Related]

  • 15. Presynaptic Diversity Revealed by Ca2+-Permeable AMPA Receptors at the Calyx of Held Synapse.
    Lujan B, Dagostin A, von Gersdorff H.
    J Neurosci; 2019 Apr 17; 39(16):2981-2994. PubMed ID: 30679394
    [Abstract] [Full Text] [Related]

  • 16. Synaptic transmission at the endbulb of Held deteriorates during age-related hearing loss.
    Xie R, Manis PB.
    J Physiol; 2017 Feb 01; 595(3):919-934. PubMed ID: 27618790
    [Abstract] [Full Text] [Related]

  • 17. Loss of miR-183/96 Alters Synaptic Strength via Presynaptic and Postsynaptic Mechanisms at a Central Synapse.
    Krohs C, Körber C, Ebbers L, Altaf F, Hollje G, Hoppe S, Dörflinger Y, Prosser HM, Nothwang HG.
    J Neurosci; 2021 Aug 11; 41(32):6796-6811. PubMed ID: 34193555
    [Abstract] [Full Text] [Related]

  • 18. Calretinin-Expressing Synapses Show Improved Synaptic Efficacy with Reduced Asynchronous Release during High-Rate Activity.
    Zhang C, Wang M, Lin S, Xie R.
    J Neurosci; 2022 Mar 30; 42(13):2729-2742. PubMed ID: 35165172
    [Abstract] [Full Text] [Related]

  • 19. Glucose and lactate as metabolic constraints on presynaptic transmission at an excitatory synapse.
    Lucas SJ, Michel CB, Marra V, Smalley JL, Hennig MH, Graham BP, Forsythe ID.
    J Physiol; 2018 May 01; 596(9):1699-1721. PubMed ID: 29430661
    [Abstract] [Full Text] [Related]

  • 20. The pool of fast releasing vesicles is augmented by myosin light chain kinase inhibition at the calyx of Held synapse.
    Srinivasan G, Kim JH, von Gersdorff H.
    J Neurophysiol; 2008 Apr 01; 99(4):1810-24. PubMed ID: 18256166
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.