These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


150 related items for PubMed ID: 15333002

  • 1. Comparison of microdosimetric simulations using PENELOPE and PITS for a 25 keV electron microbeam in water.
    Mainardi E, Donahue RJ, Wilson WE, Blakely EA.
    Radiat Res; 2004 Sep; 162(3):326-31. PubMed ID: 15333002
    [Abstract] [Full Text] [Related]

  • 2. Microdosimetric properties of ionizing electrons in water: a test of the PENELOPE code system.
    Stewart RD, Wilson WE, McDonald JC, Strom DJ.
    Phys Med Biol; 2002 Jan 07; 47(1):79-88. PubMed ID: 11814229
    [Abstract] [Full Text] [Related]

  • 3. Benchmark of PENELOPE code for low-energy photon transport: dose comparisons with MCNP4 and EGS4.
    Ye SJ, Brezovich IA, Pareek P, Naqvi SA.
    Phys Med Biol; 2004 Feb 07; 49(3):387-97. PubMed ID: 15012008
    [Abstract] [Full Text] [Related]

  • 4. Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN.
    Uusijärvi H, Chouin N, Bernhardt P, Ferrer L, Bardiès M, Forssell-Aronsson E.
    Cancer Biother Radiopharm; 2009 Aug 07; 24(4):461-7. PubMed ID: 19694581
    [Abstract] [Full Text] [Related]

  • 5. Theoretical cross sections for electron collisions in water: structure of electron tracks.
    Champion C.
    Phys Med Biol; 2003 Jul 21; 48(14):2147-68. PubMed ID: 12894976
    [Abstract] [Full Text] [Related]

  • 6. Monte Carlo simulation of the spatial distribution of energy deposition for an electron microbeam.
    Lynch DJ, Wilson WE, Batdorf MT, Sowa Resat MB, Kimmel GA, Miller JH.
    Radiat Res; 2005 Apr 21; 163(4):468-72. PubMed ID: 15799704
    [Abstract] [Full Text] [Related]

  • 7. Monte Carlo Electron Track Structure Calculations in Liquid Water Using a New Model Dielectric Response Function.
    Emfietzoglou D, Papamichael G, Nikjoo H.
    Radiat Res; 2017 Sep 21; 188(3):355-368. PubMed ID: 28650774
    [Abstract] [Full Text] [Related]

  • 8. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy.
    Botta F, Mairani A, Battistoni G, Cremonesi M, Di Dia A, Fassò A, Ferrari A, Ferrari M, Paganelli G, Pedroli G, Valente M.
    Med Phys; 2011 Jul 21; 38(7):3944-54. PubMed ID: 21858991
    [Abstract] [Full Text] [Related]

  • 9. Dose-mean lineal energy values for electrons by different Monte Carlo codes: Consequences for estimates of radiation quality in photon beams.
    Lindborg L, Lillhök J, Kyriakou I, Emfietzoglou D.
    Med Phys; 2022 Feb 21; 49(2):1286-1296. PubMed ID: 34905630
    [Abstract] [Full Text] [Related]

  • 10. Microdosimetric characteristics of carbon track-segments.
    Chen J.
    Radiat Prot Dosimetry; 2007 Feb 21; 126(1-4):445-8. PubMed ID: 17525065
    [Abstract] [Full Text] [Related]

  • 11. Analysis of low-energy electron track structure in liquid water.
    Wilson WE, Miller JH, Lynch DJ, Lewis RR, Batdorf M.
    Radiat Res; 2004 May 21; 161(5):591-6. PubMed ID: 15161364
    [Abstract] [Full Text] [Related]

  • 12. Doppler broadening effect on low-energy photon dose calculations using MCNP5 and PENELOPE.
    Ye SJ, Ove R, Naqvi SA.
    Health Phys; 2006 Oct 21; 91(4):361-6. PubMed ID: 16966879
    [Abstract] [Full Text] [Related]

  • 13. Monte Carlo simulation of water radiolysis for low-energy charged particles.
    Uehara S, Nikjoo H.
    J Radiat Res; 2006 Mar 21; 47(1):69-81. PubMed ID: 16571920
    [Abstract] [Full Text] [Related]

  • 14. Monte Carlo tools to supplement experimental microdosimetric spectra.
    Chiriotti S, Moro D, Conte V, Colautti P, D'Agostino E, Sterpin E, Vynckier S.
    Radiat Prot Dosimetry; 2014 Oct 21; 161(1-4):454-8. PubMed ID: 24132390
    [Abstract] [Full Text] [Related]

  • 15. Microdosimetric calculations of the direct DNA damage induced by low energy electrons using the Geant4-DNA Monte Carlo code.
    Margis S, Magouni M, Kyriakou I, Georgakilas AG, Incerti S, Emfietzoglou D.
    Phys Med Biol; 2020 Feb 12; 65(4):045007. PubMed ID: 31935692
    [Abstract] [Full Text] [Related]

  • 16. Effect of transverse magnetic fields on dose distribution and RBE of photon beams: comparing PENELOPE and EGS4 Monte Carlo codes.
    Nettelbeck H, Takacs GJ, Rosenfeld AB.
    Phys Med Biol; 2008 Sep 21; 53(18):5123-37. PubMed ID: 18723929
    [Abstract] [Full Text] [Related]

  • 17. NOREC, a Monte Carlo code for simulating electron tracks in liquid water.
    Semenenko VA, Turner JE, Borak TB.
    Radiat Environ Biophys; 2003 Oct 21; 42(3):213-7. PubMed ID: 12920530
    [Abstract] [Full Text] [Related]

  • 18. Microdosimetry calculations for monoenergetic electrons using Geant4-DNA combined with a weighted track sampling algorithm.
    Famulari G, Pater P, Enger SA.
    Phys Med Biol; 2017 Jul 07; 62(13):5495-5508. PubMed ID: 28486214
    [Abstract] [Full Text] [Related]

  • 19. Benchmark of penelope for low and medium energy X-rays.
    Chica U, Anguiano M, Lallena AM.
    Phys Med; 2009 Jun 07; 25(2):51-7. PubMed ID: 18495512
    [Abstract] [Full Text] [Related]

  • 20. Calculation of microdosimetric spectra for protons using Geant4-DNA and a μ-randomness sampling algorithm for the nanometric structures.
    Mokari M, Moeini H, Soleimani M.
    Int J Radiat Biol; 2021 Jun 07; 97(2):208-218. PubMed ID: 33253606
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.