These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 15336414

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Biochemical and molecular characterization of three new variants of AmpC beta-lactamases from Morganella morganii.
    Power P, Galleni M, Ayala JA, Gutkind G.
    Antimicrob Agents Chemother; 2006 Mar; 50(3):962-7. PubMed ID: 16495258
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Ciprofloxacin, salicylate, and 2,4-dinitrophenol decrease production of AmpC-type beta-lactamase in two Citrobacter freundii clinical isolates.
    Tavío MM, Perilli M, Vila J, Becerro P, Ruiz J, Amicosante G, De Anta MT.
    Microb Drug Resist; 2005 Mar; 11(3):225-31. PubMed ID: 16201924
    [Abstract] [Full Text] [Related]

  • 11. Molecular investigation of extended-spectrum beta-lactamase genes and potential drug resistance in clinical isolates of Morganella morganii.
    Al-Muhanna AS, Al-Muhanna S, Alzuhairi MA.
    Ann Saudi Med; 2016 Mar; 36(3):223-8. PubMed ID: 27236395
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Cefotaxime-hydrolysing beta lactamases in Morganella morganii.
    Power P, Radice M, Barberis C, de Mier C, Mollerach M, Maltagliatti M, Vay C, Famiglietti A, Gutkind G.
    Eur J Clin Microbiol Infect Dis; 1999 Oct; 18(10):743-7. PubMed ID: 10584905
    [Abstract] [Full Text] [Related]

  • 16. Collateral damage of flomoxef therapy: in vivo development of porin deficiency and acquisition of blaDHA-1 leading to ertapenem resistance in a clinical isolate of Klebsiella pneumoniae producing CTX-M-3 and SHV-5 beta-lactamases.
    Lee CH, Chu C, Liu JW, Chen YS, Chiu CJ, Su LH.
    J Antimicrob Chemother; 2007 Aug; 60(2):410-3. PubMed ID: 17576696
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Detection of bacterial strains producing sulbactam- or tazobactam-sensitive beta-lactamases by the use of disks containing the inhibitors alone instead of combining them with antibiotics.
    Banic S.
    APMIS; 2006 Jan; 114(1):3-9. PubMed ID: 16499654
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. In vivo development of carbapenem resistance in clinical isolates of Enterobacter aerogenes producing multiple beta-lactamases.
    Chen YG, Zhang Y, Yu YS, Qu TT, Wei ZQ, Shen P, Li LJ.
    Int J Antimicrob Agents; 2008 Oct; 32(4):302-7. PubMed ID: 18556176
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.