These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


212 related items for PubMed ID: 15336891

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Pteris ensiformis L.
    Singh N, Ma LQ.
    Environ Pollut; 2006 May; 141(2):238-46. PubMed ID: 16257102
    [Abstract] [Full Text] [Related]

  • 3. Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.).
    Cao X, Ma LQ, Tu C.
    Environ Pollut; 2004 May; 128(3):317-25. PubMed ID: 14720474
    [Abstract] [Full Text] [Related]

  • 4. Phytoremediation of an arsenic-contaminated site using Pteris vittata L.: a two-year study.
    Kertulis-Tartar GM, Ma LQ, Tu C, Chirenje T.
    Int J Phytoremediation; 2006 May; 8(4):311-22. PubMed ID: 17305305
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L.
    Fayiga AO, Ma LQ, Cao X, Rathinasabapathi B.
    Environ Pollut; 2004 Nov; 132(2):289-96. PubMed ID: 15312941
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Phytoremediation of arsenic-contaminated groundwater using arsenic hyperaccumulator Pteris vittata L.: effects of frond harvesting regimes and arsenic levels in refill water.
    Natarajan S, Stamps RH, Ma LQ, Saha UK, Hernandez D, Cai Y, Zillioux EJ.
    J Hazard Mater; 2011 Jan 30; 185(2-3):983-9. PubMed ID: 21051137
    [Abstract] [Full Text] [Related]

  • 9. Arsenic species and leachability in the fronds of the hyperaccumulator Chinese brake (Pteris vittata L.).
    Tu C, Ma LQ, Zhang W, Cai Y, Harris WG.
    Environ Pollut; 2003 Jan 30; 124(2):223-30. PubMed ID: 12713922
    [Abstract] [Full Text] [Related]

  • 10. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution.
    Gonzaga MI, Santos JA, Ma LQ.
    Environ Pollut; 2008 Jul 30; 154(2):212-8. PubMed ID: 18037547
    [Abstract] [Full Text] [Related]

  • 11. Phytoremediation of arsenic-contaminated groundwater by the arsenic hyperaccumulating fern Pteris vittata L.
    Tu S, Ma LQ, Fayiga AO, Zillioux EJ.
    Int J Phytoremediation; 2004 Jul 30; 6(1):35-47. PubMed ID: 15224774
    [Abstract] [Full Text] [Related]

  • 12. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation.
    Wei CY, Chen TB.
    Chemosphere; 2006 May 30; 63(6):1048-53. PubMed ID: 16297966
    [Abstract] [Full Text] [Related]

  • 13. Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L.
    Trotta A, Falaschi P, Cornara L, Minganti V, Fusconi A, Drava G, Berta G.
    Chemosphere; 2006 Sep 30; 65(1):74-81. PubMed ID: 16603227
    [Abstract] [Full Text] [Related]

  • 14. Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation.
    Tu C, Ma LQ, Bondada B.
    J Environ Qual; 2002 Sep 30; 31(5):1671-5. PubMed ID: 12371185
    [Abstract] [Full Text] [Related]

  • 15. Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake.
    Tu C, Ma LQ.
    J Environ Qual; 2002 Sep 30; 31(2):641-7. PubMed ID: 11931457
    [Abstract] [Full Text] [Related]

  • 16. Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.).
    Al Agely A, Sylvia DM, Ma LQ.
    J Environ Qual; 2005 Sep 30; 34(6):2181-6. PubMed ID: 16275719
    [Abstract] [Full Text] [Related]

  • 17. Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation.
    Caille N, Swanwick S, Zhao FJ, McGrath SP.
    Environ Pollut; 2004 Nov 30; 132(1):113-20. PubMed ID: 15276279
    [Abstract] [Full Text] [Related]

  • 18. Arsenic-resistant proteobacterium from the phyllosphere of arsenic-hyperaccumulating fern (Pteris vittata L.) reduces arsenate to arsenite.
    Rathinasabapathi B, Raman SB, Kertulis G, Ma L.
    Can J Microbiol; 2006 Jul 30; 52(7):695-700. PubMed ID: 16917527
    [Abstract] [Full Text] [Related]

  • 19. Localizing the biochemical transformations of arsenate in a hyperaccumulating fern.
    Pickering IJ, Gumaelius L, Harris HH, Prince RC, Hirsch G, Banks JA, Salt DE, George GN.
    Environ Sci Technol; 2006 Aug 15; 40(16):5010-4. PubMed ID: 16955900
    [Abstract] [Full Text] [Related]

  • 20. Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic.
    Srivastava M, Ma LQ, Singh N, Singh S.
    J Exp Bot; 2005 May 15; 56(415):1335-42. PubMed ID: 15781440
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.