These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


236 related items for PubMed ID: 15338080

  • 1. Robust NADH-regenerator: improved alpha-haloketone-resistant formate dehydrogenase.
    Yamamoto H, Mitsuhashi K, Kimoto N, Kobayashi Y, Esaki N.
    Appl Microbiol Biotechnol; 2005 Apr; 67(1):33-9. PubMed ID: 15338080
    [Abstract] [Full Text] [Related]

  • 2. A novel NADH-dependent carbonyl reductase from Kluyveromyces aestuarii and comparison of NADH-regeneration system for the synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate.
    Yamamoto H, Mitsuhashi K, Kimoto N, Matsuyama A, Esaki N, Kobayashi Y.
    Biosci Biotechnol Biochem; 2004 Mar; 68(3):638-49. PubMed ID: 15056898
    [Abstract] [Full Text] [Related]

  • 3. Engineering of formate dehydrogenase: synergistic effect of mutations affecting cofactor specificity and chemical stability.
    Hoelsch K, Sührer I, Heusel M, Weuster-Botz D.
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2473-81. PubMed ID: 22588502
    [Abstract] [Full Text] [Related]

  • 4. Synthesis of ethyl ( S)-4-chloro-3-hydroxybutanoate using fabG-homologues.
    Yamamoto H, Matsuyama A, Kobayashi Y.
    Appl Microbiol Biotechnol; 2003 Apr; 61(2):133-9. PubMed ID: 12655455
    [Abstract] [Full Text] [Related]

  • 5. Protein engineering of formate dehydrogenase.
    Tishkov VI, Popov VO.
    Biomol Eng; 2006 Jun; 23(2-3):89-110. PubMed ID: 16546445
    [Abstract] [Full Text] [Related]

  • 6. Enantioselective reduction of carbonyl compounds by whole-cell biotransformation, combining a formate dehydrogenase and a (R)-specific alcohol dehydrogenase.
    Ernst M, Kaup B, Müller M, Bringer-Meyer S, Sahm H.
    Appl Microbiol Biotechnol; 2005 Mar; 66(6):629-34. PubMed ID: 15549291
    [Abstract] [Full Text] [Related]

  • 7. A novel carbonyl reductase from Pichia stipitis for the production of ethyl (S)-4-chloro-3-hydroxybutanoate.
    Ye Q, Yan M, Xu L, Cao H, Li Z, Chen Y, Li S, Ying H.
    Biotechnol Lett; 2009 Apr; 31(4):537-42. PubMed ID: 19125224
    [Abstract] [Full Text] [Related]

  • 8. Accumulation of pyruvate by changing the redox status in Escherichia coli.
    Ojima Y, Suryadarma P, Tsuchida K, Taya M.
    Biotechnol Lett; 2012 May; 34(5):889-93. PubMed ID: 22215378
    [Abstract] [Full Text] [Related]

  • 9. Asymmetric reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate with two co-existing, recombinant Escherichia coli strains.
    Liu Y, Xu Z, Jing K, Jiang X, Lin J, Wang F, Cen P.
    Biotechnol Lett; 2005 Jan; 27(2):119-25. PubMed ID: 15703875
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Engineering catalytic properties and thermal stability of plant formate dehydrogenase by single-point mutations.
    Alekseeva AA, Serenko AA, Kargov IS, Savin SS, Kleymenov SY, Tishkov VI.
    Protein Eng Des Sel; 2012 Nov; 25(11):781-8. PubMed ID: 23100543
    [Abstract] [Full Text] [Related]

  • 12. [Co-expression of formate dehydrogenase from Candida boidinii and (R)-specific carbonyl reductase from Candida parapsilosis CCTCC M203011 in Escherichia coli].
    Sun Y, Zhang R, Xu Y.
    Wei Sheng Wu Xue Bao; 2008 Dec; 48(12):1629-33. PubMed ID: 19271538
    [Abstract] [Full Text] [Related]

  • 13. Purification and characterization of an alpha-haloketone-resistant formate dehydrogenase from Thiobacillus sp. strain KNK65MA, and cloning of the gene.
    Nanba H, Takaoka Y, Hasegawa J.
    Biosci Biotechnol Biochem; 2003 Oct; 67(10):2145-53. PubMed ID: 14586102
    [Abstract] [Full Text] [Related]

  • 14. Purification and characterization of a novel NADH-dependent carbonyl reductase from Pichia stipitis involved in biosynthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate.
    Cao H, Mi L, Ye Q, Zang G, Yan M, Wang Y, Zhang Y, Li X, Xu L, Xiong J, Ouyang P, Ying H.
    Bioresour Technol; 2011 Jan; 102(2):1733-9. PubMed ID: 20933386
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Effect of different levels of NADH availability on metabolic fluxes of Escherichia coli chemostat cultures in defined medium.
    Sánchez AM, Bennett GN, San KY.
    J Biotechnol; 2005 Jun 29; 117(4):395-405. PubMed ID: 15925720
    [Abstract] [Full Text] [Related]

  • 18. Biosynthesis of (S)-4-chloro-3-hydroxybutanoate ethyl using Escherichia coli co-expressing a novel NADH-dependent carbonyl reductase and a glucose dehydrogenase.
    Ye Q, Cao H, Mi L, Yan M, Wang Y, He Q, Li J, Xu L, Chen Y, Xiong J, Ouyang P, Ying H.
    Bioresour Technol; 2010 Nov 29; 101(22):8911-4. PubMed ID: 20630744
    [Abstract] [Full Text] [Related]

  • 19. Effects of disulphide bridges on the activity and stability of the formate dehydrogenase from Candida methylica.
    Karagüler NG, Sessions RB, Clarke AR.
    Biotechnol Lett; 2007 Sep 29; 29(9):1375-80. PubMed ID: 17479216
    [Abstract] [Full Text] [Related]

  • 20. Purification and properties of a carbonyl reductase useful for production of ethyl (S)-4-chloro-3-hydroxybutanoate from Kluyveromyces lactis.
    Yamamoto H, Kimoto N, Matsuyama A, Kobayashi Y.
    Biosci Biotechnol Biochem; 2002 Aug 29; 66(8):1775-8. PubMed ID: 12353647
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.