These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


367 related items for PubMed ID: 1533842

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N,N'-dicyclohexylcarbodiimide-binding proteolipid.
    Lübben M, Schäfer G.
    J Bacteriol; 1989 Nov; 171(11):6106-16. PubMed ID: 2478523
    [Abstract] [Full Text] [Related]

  • 4. The F0F1-type ATP synthases of bacteria: structure and function of the F0 complex.
    Deckers-Hebestreit G, Altendorf K.
    Annu Rev Microbiol; 1996 Nov; 50():791-824. PubMed ID: 8905099
    [Abstract] [Full Text] [Related]

  • 5. ATP synthases: insights into their motor functions from sequence and structural analyses.
    Hong S, Pedersen PL.
    J Bioenerg Biomembr; 2003 Apr; 35(2):95-120. PubMed ID: 12887009
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. ADP-Inhibition of H+-FOF1-ATP Synthase.
    Lapashina AS, Feniouk BA.
    Biochemistry (Mosc); 2018 Oct; 83(10):1141-1160. PubMed ID: 30472953
    [Abstract] [Full Text] [Related]

  • 9. Oligomycin sensitivity conferring protein of mitochondrial ATP synthase: deletions in the N-terminal end cause defects in interactions with F1, while deletions in the C-terminal end cause defects in interactions with F0.
    Joshi S, Cao GJ, Nath C, Shah J.
    Biochemistry; 1996 Sep 17; 35(37):12094-103. PubMed ID: 8810915
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Antibodies against subunits of F0 sector of ATP synthase from Saccharomyces cerevisiae. Stimulation of ATP synthase by subunit-8-reactive antibodies and inhibition by subunit-9-reactive antibodies.
    Grandier-Vazeille X, Ouhabi R, Guérin M.
    Eur J Biochem; 1994 Jul 15; 223(2):521-8. PubMed ID: 8055922
    [Abstract] [Full Text] [Related]

  • 13. Plant mitochondrial F0F1 ATP synthase. Identification of the individual subunits and properties of the purified spinach leaf mitochondrial ATP synthase.
    Hamasur B, Glaser E.
    Eur J Biochem; 1992 Apr 01; 205(1):409-16. PubMed ID: 1313368
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Structural changes linked to proton translocation by subunit c of the ATP synthase.
    Rastogi VK, Girvin ME.
    Nature; 1999 Nov 18; 402(6759):263-8. PubMed ID: 10580496
    [Abstract] [Full Text] [Related]

  • 16. Role of energy in oxidative phosphorylation.
    Matsuno-Yagi A, Hatefi Y.
    J Bioenerg Biomembr; 1988 Aug 18; 20(4):481-502. PubMed ID: 2906062
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. [ATP-synthase of bacteria, mitochondria, and chloroplasts. Properties of the F(0) membrane sector].
    Ivashchenko AT, Karpeniuk TA, Ponomarenko SV.
    Biokhimiia; 1991 Mar 18; 56(3):406-19. PubMed ID: 1832049
    [Abstract] [Full Text] [Related]

  • 19. Amino Acid Residues β139, β189, and β319 Modulate ADP-Inhibition in Escherichia coli H+-FOF1-ATP Synthase.
    Lapashina AS, Shugaeva TE, Berezina KM, Kholina TD, Feniouk BA.
    Biochemistry (Mosc); 2019 Apr 18; 84(4):407-415. PubMed ID: 31228932
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.