These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


518 related items for PubMed ID: 15338422

  • 1. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran.
    Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW.
    J Ind Microbiol Biotechnol; 2004 Sep; 31(8):345-52. PubMed ID: 15338422
    [Abstract] [Full Text] [Related]

  • 2. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains.
    Liu ZL, Slininger PJ, Gorsich SW.
    Appl Biochem Biotechnol; 2005 Sep; 121-124():451-60. PubMed ID: 15917621
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR, Bertilsson M, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF.
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments.
    Choudhary J, Singh S, Nain L.
    J Biosci Bioeng; 2017 Mar; 123(3):342-346. PubMed ID: 27856231
    [Abstract] [Full Text] [Related]

  • 10. Culture nutrition and physiology impact the inhibitor tolerance of the yeast Pichia stipitis NRRL Y-7124.
    Slininger PJ, Gorsich SW, Liu ZL.
    Biotechnol Bioeng; 2009 Feb 15; 102(3):778-90. PubMed ID: 18823052
    [Abstract] [Full Text] [Related]

  • 11. Furfural and 5-hydroxymethyl-furfural degradation using recombinant manganese peroxidase.
    Yee KL, Jansen LE, Lajoie CA, Penner MH, Morse L, Kelly CJ.
    Enzyme Microb Technol; 2018 Jan 15; 108():59-65. PubMed ID: 29108628
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion.
    Liu ZL, Moon J.
    Gene; 2009 Oct 01; 446(1):1-10. PubMed ID: 19577617
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds.
    Keating JD, Panganiban C, Mansfield SD.
    Biotechnol Bioeng; 2006 Apr 20; 93(6):1196-206. PubMed ID: 16470880
    [Abstract] [Full Text] [Related]

  • 18. Alcohol dehydrogenases from Scheffersomyces stipitis involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion.
    Ma M, Wang X, Zhang X, Zhao X.
    Appl Microbiol Biotechnol; 2013 Sep 20; 97(18):8411-25. PubMed ID: 23912116
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 26.