These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


330 related items for PubMed ID: 15341516

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Neuroprotective mechanisms of creatine occur in the absence of mitochondrial creatine kinase.
    Klivenyi P, Calingasan NY, Starkov A, Stavrovskaya IG, Kristal BS, Yang L, Wieringa B, Beal MF.
    Neurobiol Dis; 2004 Apr; 15(3):610-7. PubMed ID: 15056469
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Gated dynamic 31P MRS shows reduced contractile phosphocreatine breakdown in mice deficient in cytosolic creatine kinase and adenylate kinase.
    Kan HE, Veltien A, Arnts H, Nabuurs CI, Luijten B, de Haan A, Wieringa B, Heerschap A.
    NMR Biomed; 2009 Jun; 22(5):523-31. PubMed ID: 19156695
    [Abstract] [Full Text] [Related]

  • 8. Effects of ischemia on skeletal muscle energy metabolism in mice lacking creatine kinase monitored by in vivo 31P nuclear magnetic resonance spectroscopy.
    in 't Zandt HJ, Oerlemans F, Wieringa B, Heerschap A.
    NMR Biomed; 1999 Oct; 12(6):327-34. PubMed ID: 10516614
    [Abstract] [Full Text] [Related]

  • 9. Impaired voluntary running capacity of creatine kinase-deficient mice.
    Momken I, Lechêne P, Koulmann N, Fortin D, Mateo P, Doan BT, Hoerter J, Bigard X, Veksler V, Ventura-Clapier R.
    J Physiol; 2005 Jun 15; 565(Pt 3):951-64. PubMed ID: 15831533
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. In vivo magnetic resonance spectroscopy of transgenic mouse models with altered high-energy phosphoryl transfer metabolism.
    Renema WK, Kan HE, Wieringa B, Heerschap A.
    NMR Biomed; 2007 Jun 15; 20(4):448-67. PubMed ID: 17274105
    [Abstract] [Full Text] [Related]

  • 13. The fall in creatine levels and creatine kinase isozyme changes in the failing heart are reversible: complex post-transcriptional regulation of the components of the CK system.
    Shen W, Spindler M, Higgins MA, Jin N, Gill RM, Bloem LJ, Ryan TP, Ingwall JS.
    J Mol Cell Cardiol; 2005 Sep 15; 39(3):537-44. PubMed ID: 15978613
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK, van Dorsten FA, Nederhoff MG, van Echteld CJ, Veksler V, Nicolay K, Saks VA.
    Mol Cell Biochem; 1998 Jul 15; 184(1-2):209-29. PubMed ID: 9746323
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.