These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
562 related items for PubMed ID: 15347581
1. A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. Shannon TR, Wang F, Puglisi J, Weber C, Bers DM. Biophys J; 2004 Nov; 87(5):3351-71. PubMed ID: 15347581 [Abstract] [Full Text] [Related]
2. An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release. Greenstein JL, Winslow RL. Biophys J; 2002 Dec; 83(6):2918-45. PubMed ID: 12496068 [Abstract] [Full Text] [Related]
3. Cardiac systems biology and parameter sensitivity analysis: intracellular Ca2+ regulatory mechanisms in mouse ventricular myocytes. Shin SY, Choo SM, Woo SH, Cho KH. Adv Biochem Eng Biotechnol; 2008 Dec; 110():25-45. PubMed ID: 18437298 [Abstract] [Full Text] [Related]
4. Regulation of junctional and non-junctional sarcoplasmic reticulum calcium release in excitation-contraction coupling in cat atrial myocytes. Sheehan KA, Blatter LA. J Physiol; 2003 Jan 01; 546(Pt 1):119-35. PubMed ID: 12509483 [Abstract] [Full Text] [Related]
5. Moment closure for local control models of calcium-induced calcium release in cardiac myocytes. Williams GS, Huertas MA, Sobie EA, Jafri MS, Smith GD. Biophys J; 2008 Aug 01; 95(4):1689-703. PubMed ID: 18487291 [Abstract] [Full Text] [Related]
6. Cytosolic energy reserves determine the effect of glycolytic sugar phosphates on sarcoplasmic reticulum Ca2+ release in cat ventricular myocytes. Zima AV, Kockskämper J, Blatter LA. J Physiol; 2006 Nov 15; 577(Pt 1):281-93. PubMed ID: 16945967 [Abstract] [Full Text] [Related]
7. A probability density approach to modeling local control of calcium-induced calcium release in cardiac myocytes. Williams GS, Huertas MA, Sobie EA, Jafri MS, Smith GD. Biophys J; 2007 Apr 01; 92(7):2311-28. PubMed ID: 17237200 [Abstract] [Full Text] [Related]
8. Simulation of Ca2+-activated Cl- current of cardiomyocytes in rabbit pulmonary vein: implications of subsarcolemmal Ca2+ dynamics. Leem CH, Kim WT, Ha JM, Lee YJ, Seong HC, Choe H, Jang YJ, Youm JB, Earm YE. Philos Trans A Math Phys Eng Sci; 2006 May 15; 364(1842):1223-43. PubMed ID: 16608705 [Abstract] [Full Text] [Related]
13. A novel computational model of the human ventricular action potential and Ca transient. Grandi E, Pasqualini FS, Bers DM. J Mol Cell Cardiol; 2010 Jan 15; 48(1):112-21. PubMed ID: 19835882 [Abstract] [Full Text] [Related]
14. Axial stretch enhances sarcoplasmic reticulum Ca2+ leak and cellular Ca2+ reuptake in guinea pig ventricular myocytes: experiments and models. Iribe G, Kohl P. Prog Biophys Mol Biol; 2008 Jan 15; 97(2-3):298-311. PubMed ID: 18395247 [Abstract] [Full Text] [Related]
16. EAD and DAD mechanisms analyzed by developing a new human ventricular cell model. Asakura K, Cha CY, Yamaoka H, Horikawa Y, Memida H, Powell T, Amano A, Noma A. Prog Biophys Mol Biol; 2014 Sep 15; 116(1):11-24. PubMed ID: 25192800 [Abstract] [Full Text] [Related]
17. Immunogold-labeled L-type calcium channels are clustered in the surface plasma membrane overlying junctional sarcoplasmic reticulum in guinea-pig myocytes-implications for excitation-contraction coupling in cardiac muscle. Gathercole DV, Colling DJ, Skepper JN, Takagishi Y, Levi AJ, Severs NJ. J Mol Cell Cardiol; 2000 Nov 15; 32(11):1981-94. PubMed ID: 11040103 [Abstract] [Full Text] [Related]