These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


210 related items for PubMed ID: 15351439

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Role of substantia innominata in cerebral blood flow autoregulation.
    Ota K, Kitazono T, Ooboshi H, Kamouchi M, Katafuchi T, Aou S, Yamashita Y, Ibayashi S, Iida M.
    Brain Res; 2007 Mar 02; 1135(1):146-53. PubMed ID: 17196949
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Variability in the magnitude of the cerebral blood flow response and the shape of the cerebral blood flow-pressure autoregulation curve during hypotension in normal rats [corrected].
    Jones SC, Radinsky CR, Furlan AJ, Chyatte D, Qu Y, Easley KA, Perez-Trepichio AD.
    Anesthesiology; 2002 Aug 02; 97(2):488-96. PubMed ID: 12151941
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex.
    Weber B, Burger C, Wyss MT, von Schulthess GK, Scheffold F, Buck A.
    Eur J Neurosci; 2004 Nov 02; 20(10):2664-70. PubMed ID: 15548209
    [Abstract] [Full Text] [Related]

  • 14. Norepinephrine in the rat cortex before and after occlusion of chronic arteriovenous fistulae: a microdialysis study in an animal model of cerebral arteriovenous malformations.
    Meyer B, Stoffel M, Stuer C, Schaller C, Muhlbauer B, Schramm J.
    Neurosurgery; 2002 Sep 02; 51(3):771-9; discussion 779-80. PubMed ID: 12188957
    [Abstract] [Full Text] [Related]

  • 15. Vasomotion in the rat cerebral microcirculation recorded by laser-Doppler flowmetry.
    Morita-Tsuzuki Y, Bouskela E, Hardebo JE.
    Acta Physiol Scand; 1992 Dec 02; 146(4):431-9. PubMed ID: 1492561
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Increasing the "region of interest" and "time of interest", both reduce the variability of blood flow measurements using laser speckle contrast imaging.
    Rousseau P, Mahé G, Haj-Yassin F, Durand S, Humeau A, Leftheriotis G, Abraham P.
    Microvasc Res; 2011 Jul 02; 82(1):88-91. PubMed ID: 21439303
    [Abstract] [Full Text] [Related]

  • 18. Rapid autoregulation of cerebral blood flow: a laser-Doppler flowmetry study.
    Florence G, Seylaz J.
    J Cereb Blood Flow Metab; 1992 Jul 02; 12(4):674-80. PubMed ID: 1618945
    [Abstract] [Full Text] [Related]

  • 19. Cerebral pressure autoregulation and vasoreactivity in the newborn rat.
    Pryds A, Tønnesen J, Pryds O, Knudsen GM, Greisen G.
    Pediatr Res; 2005 Feb 02; 57(2):294-8. PubMed ID: 15585687
    [Abstract] [Full Text] [Related]

  • 20. Effects of hypertonic arginine on cerebral blood flow and intracranial pressure after traumatic brain injury combined with hemorrhagic hypotension.
    Prough DS, Kramer GC, Uchida T, Stephenson RT, Hellmich HL, Dewitt DS.
    Shock; 2006 Sep 02; 26(3):290-5. PubMed ID: 16912655
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.