These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
490 related items for PubMed ID: 15361538
1. Respiratory properties and malate metabolism in Percoll-purified mitochondria isolated from pineapple, Ananas comosus (L.) Merr. cv. smooth cayenne. Hong HT, Nose A, Agarie S. J Exp Bot; 2004 Oct; 55(406):2201-11. PubMed ID: 15361538 [Abstract] [Full Text] [Related]
2. Malate metabolism in Hoya carnosa mitochondria and its role in photosynthesis during CAM phase III. Hong HT, Nose A, Agarie S, Yoshida T. J Exp Bot; 2008 Oct; 59(7):1819-27. PubMed ID: 18403382 [Abstract] [Full Text] [Related]
3. Photosynthesis in Phosphoenolpyruvate carboxykinase-type C4 plants: mechanism and regulation of C4 acid decarboxylation in bundle sheath cells. Carnal NW, Agostino A, Hatch MD. Arch Biochem Biophys; 1993 Nov 01; 306(2):360-7. PubMed ID: 8215437 [Abstract] [Full Text] [Related]
4. Isolated durum wheat and potato cell mitochondria oxidize externally added NADH mostly via the malate/oxaloacetate shuttle with a rate that depends on the carrier-mediated transport. Pastore D, Di Pede S, Passarella S. Plant Physiol; 2003 Dec 01; 133(4):2029-39. PubMed ID: 14671011 [Abstract] [Full Text] [Related]
5. Absence of NADH channeling in coupled reaction of mitochondrial malate dehydrogenase and complex I in alamethicin-permeabilized rat liver mitochondria. Kotlyar AB, Maklashina E, Cecchini G. Biochem Biophys Res Commun; 2004 Jun 11; 318(4):987-91. PubMed ID: 15147970 [Abstract] [Full Text] [Related]
7. Mitochondria from the left heart ventricles of both normotensive and spontaneously hypertensive rats oxidize externally added NADH mostly via a novel malate/oxaloacetate shuttle as reconstructed in vitro. Atlante A, Seccia TM, De Bari L, Marra E, Passarella S. Int J Mol Med; 2006 Jul 11; 18(1):177-86. PubMed ID: 16786170 [Abstract] [Full Text] [Related]
8. Effect of bicarbonate and oxaloacetate on malate oxidation by spinach leaf mitochondria. Neuburger M, Douce R. Biochim Biophys Acta; 1980 Feb 08; 589(2):176-89. PubMed ID: 7356982 [Abstract] [Full Text] [Related]
10. Mitochondrial respiration in ME-CAM, PEPCK-CAM, and C₃ succulents: comparative operation of the cytochrome, alternative, and rotenone-resistant pathways. Peckmann K, von Willert DJ, Martin CE, Herppich WB. J Exp Bot; 2012 May 08; 63(8):2909-19. PubMed ID: 22330897 [Abstract] [Full Text] [Related]
11. Methotrexate: studies on cellular metabolism. IV. Effect on the mitochondrial oxidation of cytosolic-reducing equivalents in HeLa cells. Bastos MT, Oliveria MB, Campello AP, Klüppel ML. Cell Biochem Funct; 1990 Oct 08; 8(4):199-203. PubMed ID: 2272117 [Abstract] [Full Text] [Related]
12. Leaf malate and succinate accumulation are out of phase throughout the development of the CAM plant Ananas comosus. Rainha N, Medeiros VP, Ferreira C, Raposo A, Leite JP, Cruz C, Pacheco CA, Ponte D, Silva AB. Plant Physiol Biochem; 2016 Mar 08; 100():47-51. PubMed ID: 26773544 [Abstract] [Full Text] [Related]
13. Characterization of the kinetics of cardiac cytosolic malate dehydrogenase and comparative analysis of cytosolic and mitochondrial isoforms. Dasika SK, Vinnakota KC, Beard DA. Biophys J; 2015 Jan 20; 108(2):420-30. PubMed ID: 25606689 [Abstract] [Full Text] [Related]
14. Flux control of the malate valve in leaf cells. Fridlyand LE, Backhausen JE, Scheibe R. Arch Biochem Biophys; 1998 Jan 15; 349(2):290-8. PubMed ID: 9448717 [Abstract] [Full Text] [Related]
15. Cytosolic redox metabolism in aerobic chemostat cultures of Saccharomyces cerevisiae. Påhlman IL, Gustafsson L, Rigoulet M, Larsson C. Yeast; 2001 May 15; 18(7):611-20. PubMed ID: 11329172 [Abstract] [Full Text] [Related]
16. Evidence for the role of malic enzyme in the rapid oxidation of malate by cod heart mitochondria. Skorkowski EF, Aleksandrowicz Z, Scisłowski PW, Swierczyński J. Comp Biochem Physiol B; 1984 May 15; 77(2):379-84. PubMed ID: 6697695 [Abstract] [Full Text] [Related]
17. Ability of cytosolic malate dehydrogenase and lactate dehydrogenase to increase the ratio of NADPH to NADH oxidation by cytosolic glycerol-3-phosphate dehydrogenase. Fahien LA, Laboy JI, Din ZZ, Prabhakar P, Budker T, Chobanian M. Arch Biochem Biophys; 1999 Apr 15; 364(2):185-94. PubMed ID: 10190973 [Abstract] [Full Text] [Related]
18. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles. Lumeng L, Bremer J, Davis EJ. J Biol Chem; 1976 Jan 25; 251(2):277-84. PubMed ID: 1245472 [Abstract] [Full Text] [Related]
19. The photorespiratory hydrogen shuttle. Synthesis of phthalonic acid and its use in the characterization of the malate/aspartate shuttle in pea (Pisum sativum) leaf mitochondria. Dry IB, Dimitriadis E, Ward AD, Wiskich JT. Biochem J; 1987 Aug 01; 245(3):669-75. PubMed ID: 3663185 [Abstract] [Full Text] [Related]
20. Modelling NADH turnover in plant mitochondria. Hagedorn PH, Flyvbjerg H, Møller IM. Physiol Plant; 2004 Mar 01; 120(3):370-385. PubMed ID: 15032834 [Abstract] [Full Text] [Related] Page: [Next] [New Search]