These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
226 related items for PubMed ID: 15366839
41. A comprehensive database of cheese-derived bitter peptides and correlation to their physical properties. Kuhfeld RF, Eshpari H, Atamer Z, Dallas DC. Crit Rev Food Sci Nutr; 2024; 64(27):10105-10119. PubMed ID: 37377209 [Abstract] [Full Text] [Related]
42. Enzymatic debittering of food protein hydrolysates. FitzGerald RJ, O'Cuinn G. Biotechnol Adv; 2006; 24(2):234-7. PubMed ID: 16386868 [Abstract] [Full Text] [Related]
43. Peptidomic screening of bitter and nonbitter casein hydrolysate fractions for insulinogenic peptides. Murray NM, O'Riordan D, Jacquier JC, O'Sullivan M, Holton TA, Wynne K, Robinson RC, Barile D, Nielsen SD, Dallas DC. J Dairy Sci; 2018 Apr; 101(4):2826-2837. PubMed ID: 29428747 [Abstract] [Full Text] [Related]
44. Comparison of the aggregation behavior of soy and bovine whey protein hydrolysates. Kuipers BJ, Alting AC, Gruppen H. Biotechnol Adv; 2007 Apr; 25(6):606-10. PubMed ID: 17855038 [Abstract] [Full Text] [Related]
45. Angiotensin I converting enzyme-inhibitory peptides from commercial wet- and dry-milled corn germ. Parris N, Moreau RA, Johnston DB, Dickey LC, Aluko RE. J Agric Food Chem; 2008 Apr 23; 56(8):2620-3. PubMed ID: 18355022 [Abstract] [Full Text] [Related]
46. Review on the release mechanism and debittering technology of bitter peptides from protein hydrolysates. Liu B, Li N, Chen F, Zhang J, Sun X, Xu L, Fang F. Compr Rev Food Sci Food Saf; 2022 Nov 23; 21(6):5153-5170. PubMed ID: 36287032 [Abstract] [Full Text] [Related]
47. Quantitative structure-activity relationship study of bitter di- and tri-peptides including relationship with angiotensin I-converting enzyme inhibitory activity. Wu J, Aluko RE. J Pept Sci; 2007 Jan 23; 13(1):63-9. PubMed ID: 17117396 [Abstract] [Full Text] [Related]
48. [Characteristics of peptide preparations obtained during enzymatic hydrolysis and ultrafiltration of milk proteins for use in specialized nutrition products]. Gmoshinskiĭ IV, Kruglik VI, Samenkova NF, Krzhechkovskaia VV, Zorin SN, Mazo VK. Vopr Pitan; 1991 Jan 23; (3):21-7. PubMed ID: 1926811 [Abstract] [Full Text] [Related]
49. Bitter taste of enzymic hydrolysates of casein. I. Isolation, structural and sensorial analysis of peptides from tryptic hydrolysates of beta-casein. Bumberger E, Belitz HD. Z Lebensm Unters Forsch; 1993 Jul 23; 197(1):14-9. PubMed ID: 8356850 [Abstract] [Full Text] [Related]
50. Effects of ultrasound pretreatment on the enzymatic hydrolysis of soy protein isolates and on the emulsifying properties of hydrolysates. Chen L, Chen J, Ren J, Zhao M. J Agric Food Chem; 2011 Mar 23; 59(6):2600-9. PubMed ID: 21329351 [Abstract] [Full Text] [Related]
51. Anti-diabetic and antihypertensive activities of two flaxseed protein hydrolysate fractions revealed following their simultaneous separation by electrodialysis with ultrafiltration membranes. Doyen A, Udenigwe CC, Mitchell PL, Marette A, Aluko RE, Bazinet L. Food Chem; 2014 Feb 15; 145():66-76. PubMed ID: 24128450 [Abstract] [Full Text] [Related]
52. Angiotensin-converting enzyme inhibition and free-radical scavenging properties of cationic peptides derived from soybean protein hydrolysates. Farzamirad V, Aluko RE. Int J Food Sci Nutr; 2008 Aug 15; 59(5):428-37. PubMed ID: 18636366 [Abstract] [Full Text] [Related]
53. Improving the colloidal and sensory properties of a caseinate hydrolysate using particular exopeptidases. Ewert J, Schlierenkamp F, Nesensohn L, Fischer L, Stressler T. Food Funct; 2018 Nov 14; 9(11):5989-5998. PubMed ID: 30379169 [Abstract] [Full Text] [Related]
54. Bovine hemoglobin: an attractive source of antibacterial peptides. Nedjar-Arroume N, Dubois-Delval V, Adje EY, Traisnel J, Krier F, Mary P, Kouach M, Briand G, Guillochon D. Peptides; 2008 Jun 14; 29(6):969-77. PubMed ID: 18342399 [Abstract] [Full Text] [Related]
55. Enzymatic hydrolysis of soy protein for nutritional fortification of low pH food. Adler-Nissen J. Ann Nutr Aliment; 1978 Jun 14; 32(2-3):205-16. PubMed ID: 568441 [Abstract] [Full Text] [Related]
56. The bioactivity and fractionation of peptide hydrolysates in cultures of CHO cells. Spearman M, Lodewyks C, Richmond M, Butler M. Biotechnol Prog; 2014 Jun 14; 30(3):584-93. PubMed ID: 24846804 [Abstract] [Full Text] [Related]
57. Practical debittering using model peptides and related compounds. Tamura M, Mori N, Miyoshi T, Koyama S, Kohri H, Okai H. Agric Biol Chem; 1990 Jan 14; 54(1):41-51. PubMed ID: 1368525 [Abstract] [Full Text] [Related]
58. New insights into the structural characteristics of the arabinogalactan-protein (AGP) fraction of gum arabic. Mahendran T, Williams PA, Phillips GO, Al-Assaf S, Baldwin TC. J Agric Food Chem; 2008 Oct 08; 56(19):9269-76. PubMed ID: 18783242 [Abstract] [Full Text] [Related]
59. [Enzymatic modification of the functional, nutritional and sensorial properties of soybeans for special feeding]. Calderón de la Barca AM, Wall Medrano A, Jara Marini M, González Córdova AF, Ruíz Salazar A. Arch Latinoam Nutr; 2000 Mar 08; 50(1):26-34. PubMed ID: 11048568 [Abstract] [Full Text] [Related]
60. Two-stage selective enzymatic hydrolysis generates protein hydrolysates rich in Asn-Pro and Ala-His for enhancing taste attributes of soy sauce. Zhao Y, Zhao X, Sun-Waterhouse D, Ivan Neil Waterhouse G, Zhao M, Zhang J, Wang F, Su G. Food Chem; 2021 May 30; 345():128803. PubMed ID: 33310561 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]