These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. Henry S, Baudoin E, López-Gutiérrez JC, Martin-Laurent F, Brauman A, Philippot L. J Microbiol Methods; 2004 Dec; 59(3):327-35. PubMed ID: 15488276 [Abstract] [Full Text] [Related]
3. Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. López-Gutiérrez JC, Henry S, Hallet S, Martin-Laurent F, Catroux G, Philippot L. J Microbiol Methods; 2004 Jun; 57(3):399-407. PubMed ID: 15134887 [Abstract] [Full Text] [Related]
4. Identification and quantification of arsC genes in environmental samples by using real-time PCR. Sun Y, Polishchuk EA, Radoja U, Cullen WR. J Microbiol Methods; 2004 Sep; 58(3):335-49. PubMed ID: 15279938 [Abstract] [Full Text] [Related]
5. Detection and quantification of phnE gene from oil-contaminated soil samples by competitive quantitative PCR. Lui P, Zhang CK. Microbiol Res; 2007 Sep; 162(4):335-40. PubMed ID: 16563713 [Abstract] [Full Text] [Related]
6. Observation of high seasonal variation in community structure of denitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure by determining T-RFLP of nir gene fragments. Wolsing M, Priemé A. FEMS Microbiol Ecol; 2004 May 01; 48(2):261-71. PubMed ID: 19712409 [Abstract] [Full Text] [Related]
7. Detection and diversity of copper containing nitrite reductase genes (nirK) in prokaryotic and fungal communities of agricultural soils. Long A, Song B, Fridey K, Silva A. FEMS Microbiol Ecol; 2015 Feb 01; 91(2):1-9. PubMed ID: 25764542 [Abstract] [Full Text] [Related]
8. Visualization and direct counting of individual denitrifying bacterial cells in soil by nirK-targeted direct in situ PCR. Ryuda N, Hashimoto T, Ueno D, Inoue K, Someya T. Microbes Environ; 2011 Feb 01; 26(1):74-80. PubMed ID: 21487206 [Abstract] [Full Text] [Related]
9. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. Throbäck IN, Enwall K, Jarvis A, Hallin S. FEMS Microbiol Ecol; 2004 Sep 01; 49(3):401-17. PubMed ID: 19712290 [Abstract] [Full Text] [Related]
10. Diversity and Abundance of the Denitrifying Microbiota in the Sediment of Eastern China Marginal Seas and the Impact of Environmental Factors. Gao M, Liu J, Qiao Y, Zhao M, Zhang XH. Microb Ecol; 2017 Apr 01; 73(3):602-615. PubMed ID: 27924403 [Abstract] [Full Text] [Related]
11. Real-time PCR assays targeting formyltetrahydrofolate synthetase gene to enumerate acetogens in natural and engineered environments. Xu K, Liu H, Du G, Chen J. Anaerobe; 2009 Oct 01; 15(5):204-13. PubMed ID: 19328859 [Abstract] [Full Text] [Related]
12. Quantitative measurement of fungal DNA extracted by three different methods using real-time polymerase chain reaction. Kabir S, Rajendran N, Amemiya T, Itoh K. J Biosci Bioeng; 2003 Oct 01; 96(4):337-43. PubMed ID: 16233533 [Abstract] [Full Text] [Related]
13. [Effects of different fertilization regimes on abundance and community structure of the nirK-type denitrifying bacteria in greenhouse vegetable soils]. Zeng XB, Wang YN, Wang YZ, Bai LY, Li LF, Duan R, Su SM, Wu CX. Ying Yong Sheng Tai Xue Bao; 2014 Feb 01; 25(2):505-14. PubMed ID: 24830252 [Abstract] [Full Text] [Related]
14. Immunological method for direct assessment of the functionality of a denitrifying strain of Pseudomonas fluorescens in soil. Maron PA, Richaume A, Potier P, Lata JC, Lensi R. J Microbiol Methods; 2004 Jul 01; 58(1):13-21. PubMed ID: 15177899 [Abstract] [Full Text] [Related]
15. Silver (Ag+) reduces denitrification and induces enrichment of novel nirK genotypes in soil. Throbäck IN, Johansson M, Rosenquist M, Pell M, Hansson M, Hallin S. FEMS Microbiol Lett; 2007 May 01; 270(2):189-94. PubMed ID: 17250758 [Abstract] [Full Text] [Related]
16. Use of the frc gene as a molecular marker to characterize oxalate-oxidizing bacterial abundance and diversity structure in soil. Khammar N, Martin G, Ferro K, Job D, Aragno M, Verrecchia E. J Microbiol Methods; 2009 Feb 01; 76(2):120-7. PubMed ID: 18930770 [Abstract] [Full Text] [Related]
17. Rapid detection and quantification of bisulfite reductase genes in oil field samples using real-time PCR. Agrawal A, Lal B. FEMS Microbiol Ecol; 2009 Aug 01; 69(2):301-12. PubMed ID: 19527290 [Abstract] [Full Text] [Related]
18. Multiple displacement amplification as a pre-polymerase chain reaction (pre-PCR) to process difficult to amplify samples and low copy number sequences from natural environments. Gonzalez JM, Portillo MC, Saiz-Jimenez C. Environ Microbiol; 2005 Jul 01; 7(7):1024-8. PubMed ID: 15946299 [Abstract] [Full Text] [Related]
19. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Henry S, Bru D, Stres B, Hallet S, Philippot L. Appl Environ Microbiol; 2006 Aug 01; 72(8):5181-9. PubMed ID: 16885263 [Abstract] [Full Text] [Related]
20. A TaqMan polymerase chain reaction method for monitoring RDX-degrading bacteria based on the xplA functional gene. Indest KJ, Crocker FH, Athow R. J Microbiol Methods; 2007 Feb 01; 68(2):267-74. PubMed ID: 17010461 [Abstract] [Full Text] [Related] Page: [Next] [New Search]