These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


432 related items for PubMed ID: 15375034

  • 21. Role of the heat-induced whey protein/kappa-casein complexes in the formation of acid milk gels: a kinetic study using rheology and confocal microscopy.
    Guyomarc'h F, Jemin M, Le Tilly V, Madec MN, Famelart MH.
    J Agric Food Chem; 2009 Jul 08; 57(13):5910-7. PubMed ID: 19534462
    [Abstract] [Full Text] [Related]

  • 22. Impact of oil type and WPI/Tween 80 ratio at the oil-water interface: Adsorption, interfacial rheology and emulsion features.
    Gomes A, Costa ALR, Cunha RL.
    Colloids Surf B Biointerfaces; 2018 Apr 01; 164():272-280. PubMed ID: 29413606
    [Abstract] [Full Text] [Related]

  • 23. The roles of disulphide and non-covalent bonding in the functional properties of heat-induced whey protein gels.
    Havea P, Carr AJ, Creamer LK.
    J Dairy Res; 2004 Aug 01; 71(3):330-9. PubMed ID: 15354580
    [Abstract] [Full Text] [Related]

  • 24. Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size.
    Anema SG, Li Y.
    J Dairy Res; 2003 Feb 01; 70(1):73-83. PubMed ID: 12617395
    [Abstract] [Full Text] [Related]

  • 25. Interfacial and oil/water emulsions characterization of potato protein isolates.
    Romero A, Beaumal V, David-Briand E, Cordobés F, Guerrero A, Anton M.
    J Agric Food Chem; 2011 Sep 14; 59(17):9466-74. PubMed ID: 21806058
    [Abstract] [Full Text] [Related]

  • 26. Effect of gastric conditions on β-lactoglobulin interfacial networks: influence of the oil phase on protein structure.
    Maldonado-Valderrama J, Miller R, Fainerman VB, Wilde PJ, Morris VJ.
    Langmuir; 2010 Oct 19; 26(20):15901-8. PubMed ID: 20857971
    [Abstract] [Full Text] [Related]

  • 27. Interactions of whey proteins during heat treatment of oil-in-water emulsions formed with whey protein isolate and hydroxylated lecithin.
    Jiménez-Flores R, Ye A, Singh H.
    J Agric Food Chem; 2005 May 18; 53(10):4213-9. PubMed ID: 15884863
    [Abstract] [Full Text] [Related]

  • 28. Structural rearrangement of β-lactoglobulin at different oil-water interfaces and its effect on emulsion stability.
    Zhai J, Wooster TJ, Hoffmann SV, Lee TH, Augustin MA, Aguilar MI.
    Langmuir; 2011 Aug 02; 27(15):9227-36. PubMed ID: 21668007
    [Abstract] [Full Text] [Related]

  • 29. Heat-induced destabilization of oil-in-water emulsions formed from hydrolyzed whey protein.
    Euston SR, Finnigan SR, Hirst RL.
    J Agric Food Chem; 2001 Nov 02; 49(11):5576-83. PubMed ID: 11714362
    [Abstract] [Full Text] [Related]

  • 30. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.
    Dan A, Gochev G, Miller R.
    J Colloid Interface Sci; 2015 Jul 01; 449():383-91. PubMed ID: 25666640
    [Abstract] [Full Text] [Related]

  • 31. Interfacial and emulsification properties of sono-emulsified grape seed oil emulsions stabilized with milk proteins.
    Silva M, Zisu B, Chandrapala J.
    Food Chem; 2020 Mar 30; 309():125758. PubMed ID: 31699551
    [Abstract] [Full Text] [Related]

  • 32. Heat-induced whey protein gels: protein-protein interactions and functional properties.
    Havea P, Watkinson P, Kuhn-Sherlock B.
    J Agric Food Chem; 2009 Feb 25; 57(4):1506-12. PubMed ID: 19199595
    [Abstract] [Full Text] [Related]

  • 33. Ellipsometric study of the displacement of milk proteins from the oil-water interface by the non-ionic surfactant C(10)E(8).
    Day JP, Pudney PD, Bain CD.
    Phys Chem Chem Phys; 2010 May 14; 12(18):4590-9. PubMed ID: 20428538
    [Abstract] [Full Text] [Related]

  • 34. Effect of Oil Hydrophobicity on the Adsorption and Rheology of β-Lactoglobulin at Oil-Water Interfaces.
    Bergfreund J, Bertsch P, Kuster S, Fischer P.
    Langmuir; 2018 Apr 24; 34(16):4929-4936. PubMed ID: 29616820
    [Abstract] [Full Text] [Related]

  • 35. Influence of the emulsion droplet type on the rheological characteristics and microstructure of rennet gels from reconstituted milk.
    Gaygadzhiev Z, Hill A, Corredig M.
    J Dairy Res; 2009 Aug 24; 76(3):349-55. PubMed ID: 19519978
    [Abstract] [Full Text] [Related]

  • 36. Kinetics of heat-induced whey protein denaturation and aggregation in skim milks with adjusted whey protein concentration.
    Oldfield DJ, Singh H, Taylor MW.
    J Dairy Res; 2005 Aug 24; 72(3):369-78. PubMed ID: 16174369
    [Abstract] [Full Text] [Related]

  • 37. Rheological properties of acid gels prepared from heated pH-adjusted skim milk.
    Anema SG, Lee SK, Lowe EK, Klostermeyer H.
    J Agric Food Chem; 2004 Jan 28; 52(2):337-43. PubMed ID: 14733518
    [Abstract] [Full Text] [Related]

  • 38. Effect of oleic acid on the properties of protein adsorbed layers at water/oil interfaces: An EPR study combined with dynamic interfacial tension measurements.
    Kalogianni EP, Sklaviadis L, Nika S, Theochari I, Dimitreli G, Georgiou D, Papadimitriou V.
    Colloids Surf B Biointerfaces; 2017 Oct 01; 158():498-506. PubMed ID: 28735222
    [Abstract] [Full Text] [Related]

  • 39. Rheological properties of rennet gels containing milk protein concentrates.
    Ferrer MA, Hill AR, Corredig M.
    J Dairy Sci; 2008 Mar 01; 91(3):959-69. PubMed ID: 18292251
    [Abstract] [Full Text] [Related]

  • 40. Properties and stability of oil-in-water emulsions stabilized by coconut skim milk proteins.
    Onsaard E, Vittayanont M, Srigam S, McClements DJ.
    J Agric Food Chem; 2005 Jul 13; 53(14):5747-53. PubMed ID: 15998143
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 22.