These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


326 related items for PubMed ID: 15377534

  • 1. Oligomerization of amyloid Abeta16-22 peptides using hydrogen bonds and hydrophobicity forces.
    Favrin G, Irbäck A, Mohanty S.
    Biophys J; 2004 Dec; 87(6):3657-64. PubMed ID: 15377534
    [Abstract] [Full Text] [Related]

  • 2. Stability and structure of oligomers of the Alzheimer peptide Abeta16-22: from the dimer to the 32-mer.
    Röhrig UF, Laio A, Tantalo N, Parrinello M, Petronzio R.
    Biophys J; 2006 Nov 01; 91(9):3217-29. PubMed ID: 16920832
    [Abstract] [Full Text] [Related]

  • 3. Mechanistic insight into E22Q-mutation-induced antiparallel-to-parallel β-sheet transition of Aβ16-22 fibrils: an all-atom simulation study.
    Li X, Lei J, Qi R, Xie L, Wei G.
    Phys Chem Chem Phys; 2019 Jul 17; 21(28):15686-15694. PubMed ID: 31271401
    [Abstract] [Full Text] [Related]

  • 4. Dissecting the assembly of Abeta16-22 amyloid peptides into antiparallel beta sheets.
    Klimov DK, Thirumalai D.
    Structure; 2003 Mar 17; 11(3):295-307. PubMed ID: 12623017
    [Abstract] [Full Text] [Related]

  • 5. Effects of hydrophobic macromolecular crowders on amyloid β (16-22) aggregation.
    Latshaw DC, Hall CK.
    Biophys J; 2015 Jul 07; 109(1):124-34. PubMed ID: 26153709
    [Abstract] [Full Text] [Related]

  • 6. Aggregation of beta-amyloid fragments.
    Meinke JH, Hansmann UH.
    J Chem Phys; 2007 Jan 07; 126(1):014706. PubMed ID: 17212510
    [Abstract] [Full Text] [Related]

  • 7. Probing the role of backbone hydrogen bonding in beta-amyloid fibrils with inhibitor peptides containing ester bonds at alternate positions.
    Gordon DJ, Meredith SC.
    Biochemistry; 2003 Jan 21; 42(2):475-85. PubMed ID: 12525175
    [Abstract] [Full Text] [Related]

  • 8. Molecular dynamics simulation of amyloid beta dimer formation.
    Urbanc B, Cruz L, Ding F, Sammond D, Khare S, Buldyrev SV, Stanley HE, Dokholyan NV.
    Biophys J; 2004 Oct 21; 87(4):2310-21. PubMed ID: 15454432
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Beta2-microglobulin amyloid fragment organization and morphology and its comparison to Abeta suggests that amyloid aggregation pathways are sequence specific.
    Zheng J, Jang H, Nussinov R.
    Biochemistry; 2008 Feb 26; 47(8):2497-509. PubMed ID: 18215070
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. The role of phenolic OH groups of flavonoid compounds with H-bond formation ability to suppress amyloid mature fibrils by destabilizing β-sheet conformation of monomeric Aβ17-42.
    Andarzi Gargari S, Barzegar A, Tarinejad A.
    PLoS One; 2018 Feb 26; 13(6):e0199541. PubMed ID: 29953467
    [Abstract] [Full Text] [Related]

  • 15. Simulation of molecular crowding effects on an Alzheimer's beta-amyloid peptide.
    Li X, Mehler EL.
    Cell Biochem Biophys; 2006 Feb 26; 46(2):123-41. PubMed ID: 17012754
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Polymorphic fibril formation by residues 10-40 of the Alzheimer's beta-amyloid peptide.
    Paravastu AK, Petkova AT, Tycko R.
    Biophys J; 2006 Jun 15; 90(12):4618-29. PubMed ID: 16565054
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.